Volume 27, Issue 2 (July 2023)                   Physiol Pharmacol 2023, 27(2): 141-149 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jayband S, Ashrafi M, Chehardahcherik M, Ahmadi N, Barghi M, Tavana M. Evaluation of the protective effect of Zataria multiflora Boiss essential oil on biochemical and histopathological parameters of kidney tissues in chronic administration of CCl4. Physiol Pharmacol 2023; 27 (2) :141-149
URL: http://ppj.phypha.ir/article-1-1886-en.html
Abstract:   (1213 Views)

Introduction: Carbon tetrachloride (CCl4 ) is a toxic compound since it causes acute and chronic toxicity in various tissues due to oxidative stress. On the other hand, Zataria multiflora Boiss (ZM) essential oil as a natural product has different biological effects such as antioxidant activity. Therefore, this study was carried out to assess the protective potential of ZM essential oil on possible toxicity induced by chronic administration of CCl4 in kidney tissues of rats.
Methods: Male Sprague-Dawley rats were assigned into five groups including C: control group; CO: vehicle control group; CE: rats that were given the essential oil (500µl/kg/day); F: rats that received CCl4 (1ml/kg) twice a week; and FE: rats that were given CCl4 and essential oil with the mentioned doses. After 11 weeks of study, kidney tissues were collected to measure the activity of AST, ALT, ALP, GGT and LDH enzymes and oxidative stress parameters (TAC, TBARS and GSH).
Results: The results showed a significant increase in the activity of ALT, ALP and LDH enzymes in kidney tissues of group F compared to the control groups, probably due to defects in cell metabolism induced by CCl4 . But in FE group, essential oil due to antioxidant activity could ameliorate the mentioned parameters in comparison to group F. There was not a significant change in the level of lipid peroxidation marker in kidney tissues of group F in comparison to the control groups. Histopathological studies also did not show any significant changes among kidney tissues of groups.
Conclusion: Administration of CCl4 affected on the activity of some biochemical enzymes in kidney tissues but there was no oxidative stress or injury in the tissues. However, prophylactic administration of ZM Boiss essential oil had antioxidant prop-erties in modulating the measured parameters.

Full-Text [PDF 1011 kb]   (388 Downloads)    

References
1. Abraham P, Wilfred G. Oxidative damage to the lipids and proteins pf the lungs, testis and kidney of rats during carbon tetrachloride intoxication. Clin Chim Acta 1999; 289: 177-9. [DOI:10.1016/s0009-8981 (99)00140-0]
2. Ahmad VU, Jassbi AR, Tareen RB. Constituents of the essential oil of Zataria multiflora Boiss from Pakistan. J Essent Oil Res 1999; 11: 179-81. [DOI:10.1080/10412905.1999.9701104]
3. Ali MS, Saleem M, Ali Z, Ahmad VU. Chemistry of zataria multiflora (Lamiaceae). Phytochemistry .2000; 55: 933-936. [DOI:10.1016/S0031-9422(00)00249-1]
4. Alizadeh A, Shaabani M. Essential oil composition, total phenolic content and antioxidant activities of Iranian Zataria multiflora Boiss. Int J Biosci 2014; 4: 97-104. [DOI:10.12692/ijb/4.4.97-104]
5. Al-Sayed E, Abdel-Daim MM. Protective role of Cupressuflavone from Cupressus Macrocarpagainst carbon tetrachloride-induced hepato-and nephrotoxicity in mice. Planta Medica 2014; 80: 1665-71. [DOI:10.1055/s-0034-1383211]
6. Barghi M, Ashrafi M, Aminlari M, Namazi F, Nazifi S. The protective effect of Zataria multiflora Boiss essential oil on CCl4 induced liver fibrosis in rats. Drug Chem Toxicol 2019; 12:1-9. [DOI:10.1080/01480545.2019.1571502]
7. Behnam B, Aliakbarlou J. Antioxidant effects of zataria multiflora and mentha longifolia essential oils on chicken meat stored at 4°C. J Food Res. 2014; 23: 533-43.
8. Boskabady MH, Gholami Mhtaj L. Effect of the Zataria multiflora on systemic inflammation of experimental animal models of COPD. Biomed Res Int 2014; 2014:1-9. [DOI:10.1155/2014/802189]
9. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54. [DOI:10.1016/0003-2697 (76)90527-3]
10. Can Baser K. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 2008; 14: 3106-19. [DOI:10. 2174/138161208786404227]
11. Carvalho AR, Jones JG, McGuirk C, Sherry AD, Malloy CR. Hepatic gluconeogenesis and Krebs cycle fluxes in a CCl4 model of acute liver failure. NMR Biomed 2002; 15: 45-51. [DOI:10.1002/nbm.745]
12. Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodents. Fibrosis Research. Springer. 2005; 117: 237-50. [DOI:10.1385/1-59259-940-0:237]
13. Dini S, Dadkhah A, Fatemi F. Biological properties of Iranian Zataria Multiflora essential oils: a comparative approach. Electron. J Biol 2015; 11: 57-62.
14. Doğukan A, Akpolat N, Çeliker H, Ilhan N, Halil Bahçecioğlu I, et al. Protective effect of interferon-alpha on carbon tetrachloride-induced nephrotoxicity. J Nephrol 2003; 16: 81-84.
15. Faroon O. Toxicological profile for carbon tetrachloride. Agency for Toxic Substances and Disease Registry 2005.
16. Ganie SA, Haq E, Hamid A, Qurishi Y, Mahmood Z, et al. Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum. BMC Complem Altern Med 2011; 11: 17. [DOI:10.1186/1472-6882-11-17]
17. Goasduff T, Bellec G, Amet Y, Dreano Y, Menez JF, et al. P450 2E1 expression in liver, kidney, and lung of rats treated with single or combined inducers Alcohol. Clin Exp Res 1996; 13:301-8. [DOI:10.1016/0741-8329 (95)02111-6]
18. Hassan W, Noreen H, Rehman S. Oxidative stress and antioxidant potential of one hundred medicinal plants. Curr Top Med Chem 2017; 17: 1336-70. [DOI:10.2174/1568026617666170102125648]
19. Jayakumar T, Sakthivel M, Thomas P, Geraldine P. Pleurotus ostreatus, an oystermushroom, decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and brain. Chem Biol Interact 2008; 176(20): 108-20. [DOI:10.1016/j.cbi.2008.08.006]
20. Kavoosi G, Rabiei F. Zataria multiflora: chemical and biological diversity in the essential oil. J. Essent. Oil Res 2015; 27: 428-36. [DOI:10.1080/10412905.2015.1031917]
21. Khan RA, Khan MR, Sahreen S, Bokhai J. Prevention of CCl4-induced nephrotoxicity with Sonchus asper in rat. Food Chem Toxicol 2010; 48(8): 2469-76. [DOI:10.1016/j.fct.2010.06.016]
22. Ozbek E. Induction of oxidative stress in kidney. Int J Nephrol 2012; 2012:1-9. [DOI:10.1155/2012/465897]
23. Ozturk F, Ucar M, Ozturk IC, Vardi N, Batcioglu K. Carbon tetrachloride-induced nephrotoxicity and protective effect of betaine in Sprague-Dawley rats. Urology 2003; 62 (2):353-6. [DOI:10.1016/s0090-4295 (03)00255-3]
24. Pääkkö P, Anttila S, Sormunen R, Ala- kokko L, Peura R, et al. Biochemical and morphological characterization of carbon tetrachloride-induced lung fibrosis in rats. Arch Toxicol 1996; 70(9): 540-52. [DOI:10.1007/s002040050311]
25. Peeri M, Haghigh MM, Azarbayjani MA. Effect of aqueous extract of saffron and aerobic training on hepatic non enzymatic antioxidant levels in streptozotocin-diabetic rats. Arch Sci 2012; 65: 525-32.
26. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30(1):11-26. [DOI:10.1007/s12291-014-0446-0]
27. Raeisi M, Hashemi M, Aminzare M, Afshari A, Zeinali T, et al. An investigation of the effect of Zataria multiflora Boiss and Mentha piperita essential oils to improve the chemical stability of minced meat. Vet World 2018; 11(12):1656-62. [DOI:10.14202/vetworld. 2018.1656-62]
28. Rahmat AA, Dar FA, Choudhary IM. Protection of CCl4-induced liver and kidney damage by phenolic compounds in leaf extracts of Cnestis ferruginea (de Candolle). Pharmacogn Res 2014; 6(1): 19-28. [DOI:10.4103/0974-8490.122913]
29. Rincón AR, Covarrubias A, Pedraza-Chaverrí J, Luispoo J, Borunda JA, et al. Differential effect of CCl4 on renal function in cirrhotic and non-cirrhotic rats. Exp Toxicol Pathol 1999; 51:199-205. [DOI:10.1016/S0940-2993(99)80094-3]
30. Saei-Dehkordi SS, Tajik H, Moradi M, KHhaligi F. Chemical composition of essential oils in Zataria multiflora Boiss from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem Toxicol 2010; 48(6): 1562-7. [DOI:10.1016/j.fct.2010.03.025]
31. Safhi MM. Nephroprotective effect of Zingerone against CCl4-induced renal toxicity in Swiss albino mice: molecular mechanism. Oxid Med Cell Longev 2018; 2018:1-7. [DOI:10.1155/2018/2474831]
32. Sajed H, Sahebkar A, Iranshahi M. Zataria multiflora Boiss (Shirazi thyme)—an ancient condiment with modern pharmaceutical uses. J Ethnopharmacol 2013; 145: 686-98. [DOI:10.1016/j.jep.2012.12.018]
33. Sepulveda JL. Challenges in routine clinical chemistry analysis: proteins and enzymes. Accurate Results in the Clinical Laboratory. Elsevier. 2019; 141-63.
34. Sharififar F, Derakhshanfar A, Dehghan-Nudeh G, Abbasi N, Abbasi R, et al. In vivo antioxidant activity of Zataria multiflora Boiss essential oil. Pak J Pharm Sci 2011; 24(2): 221-5.
35. Sharififar F, Moshafi M, Mansouri S, Khodashenas M, Khoshnoodi M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control 2007; 18(7):800-5. [DOI:10.1016/j.foodcont.2006.04.002]
36. Shomali T, Raeesi M, Eskandari-Roozbahani N. Zataria multiflora Boiss essential oil against ethanol-induced gastric ulcer in rats by antioxidant properties and increase in nitric oxide production. J Herbmed Pharmacol 2016; 5(4): 143-8.
37. Song B, Cederbaum AI. Ethanol inducible cytochrome P450 (CYP2E1): biochemistry,molecular biology and clinical relevance: 1996 update Alcohol. Clin Exp Res 1996; 20(8): 138-46. [DOI:10.1111/j.1530-0277.1996.tb01764.x]
38. Srivastava A, Shivanandappa T. Hepatoprotective effect of the root extract of Decalepis hamiltonii against carbon tetrachloride-induced oxidative stress in rats. Food Chem 2010; 118(2): 411-7. [DOI:10.1016/j.foodchem.2009.05.014]
39. Teixeira-Clerc F, Julien B, Grenard P, Tran van Nhieu J, Deveaux V, et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med 2006; 12(6): 671-6. [DOI:10.1038/nm1421]
40. Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 2003; 33 (2): 105-36. [DOI:10.1080/713611034]
41. Zager RA, Johnson AC, Becker K. Renal cortical lactate dehydrogenase: a useful, accurate, quantitative marker of in vivo tubular injury and acute renal failure. PloS One 2013; 8(6):e66776. [DOI:10.1371/journal.pone.0066776]
42. Zager RA, Johnson AC, Becker K. Renal cortical pyruvate depletion during AKI. J Am Soc Nephrol 2014; 25(5): 998-1012. [DOI:10.1681/asn.2013070791]
43. Zargari, A. Treatment with Plants, Pharmacogenosis. J Herb Med. Publication of Tehran University. Tehran. 1990:83.
44. Zerilli A, Lucas D, Amet Y, Beauge F, Volant A. Cytochrome P-450 2E1 in rat liver, kidney and lung microsomes after chronic administration of ethanol either orally or by inhalation. Alcohol Alcohol 1995; 30(3): 357-65. [DOI:10.1093/oxfordjournals.alcalc.a045740]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.