Volume 28, Issue 2 (July 2024)                   Physiol Pharmacol 2024, 28(2): 128-140 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hemmati F, Valian N, Ahmadiani A, Mohamed Z, Azman Ali R, Mohamed Ibrahim N et al . Insulin and toll-like receptor 4 interaction in the rat model of Parkinson’s disease induced by lipopolysaccharide. Physiol Pharmacol 2024; 28 (2) : 4
URL: http://ppj.phypha.ir/article-1-2250-en.html
Abstract:   (515 Views)
Introduction: Toll-like receptor (TLR) 4 is involved in neuroinflammatory processes in peripheral tissues and central nervous system. Pro-inflammatory cytokines production, due to over activation of TLR4, interfere with insulin signaling elements lead to insulin resistance. Regarding the critical roles of TLR4 and insulin in the pathogenesis of Parkinson’s disease (PD), in the present study the TLR4/insulin receptor interaction was assessed in a neuroinflammation model of PD.
Methods: LPS was injected into the right striatum of male Wistar rats (20µg/rat). Insulin (2.5IU/ day), insulin receptor antagonist (S961; 6.5nM/kg), or TLR4 antibody (Resatorvid (TAK242); 0.01µg/rat) were administered intracerebroventricularly (ICV) for 14 days. Insulin and TAK242 were also simultaneously injected in a distinct group. Behavioral assessments were performed using rotarod, apomorphine-induced rotation, and cylinder tests. The levels of α-synuclein, TLR4, and elements of the insulin signaling pathway were measured in the striatum.
Results: LPS impaired motor performance of the animals and increased the levels of α-synuclein and TLR4. Furthermore, it reduced mRNA levels of IRS1 and IRS2 and enhanced GSK3β mRNA and protein levels, indicating the development of insulin resistance. Treatment with insulin and TAK 242 improved motor deficits, restored insulin signaling pathway, and reduced α-synuclein and TLR4 levels.
Conclusion: The findings indicate that LPS impaired motor function, at least in part, via α-synuclein and TLR4 overexpression, leading to insulin resistance. Suppression of TLR4 and activation of insulin receptors attenuated motor deficits, suggesting that TLR4 and insulin receptors are promising the
rapeutic targets for PD modification.
Article number: 4
Full-Text [PDF 3475 kb]   (31 Downloads)    

References
1. Akhtar A, Sah S P. Insulin signaling pathway and related molecules: role in neurodegeneration and Alzheimer’s disease. Neurochemistry international 2020; 135: 104707. [DOI:10.1016/j.neuint.2020.104707]
2. Athauda D, Foltynie T. Insulin resistance and Parkinson’s disease: a new target for disease modification? Progress in neurobiology 2016; 145: 98-120. [DOI:10.1016/j.pneurobio.2016.10.001]
3. Balakumar M, Saravanan N, Prabhu D, Regin B, Reddy G B, Mohan V, et al. Benefits of early glycemic control by insulin on sensory neuropathy and cataract in diabetic rats. 2013.
4. Banks W A, Owen J B, Erickson M A. Insulin in the brain: there and back again. Pharmacology & Therapeutics 2012; 136: 82-93. [DOI:10.1016/j.pharmthera.2012.07.006]
5. Bellini M J, Hereñú C B, Goya R G, Garcia-Segura L M. Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide. Journal of Neuroinflammation 2011; 8: 1-13. [DOI:10.1186/1742-2094-8-21]
6. Bendor J T, Logan T P, Edwards R H. The function of α-synuclein. Neuron 2013; 79: 1044-1066. [DOI:10.1016/j.neuron.2013.09.004]
7. Bowman C C, Rasley A, Tranguch S L, Marriott I. Cultured astrocytes express toll-like receptors for bacterial products. Glia 2003; 43: 281-291. [DOI:10.1002/glia.10256]
8. Chinta S J, Mallajosyula J K, Rane A, Andersen J K. Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience Letters 2010; 486: 235-239. [DOI:10.1016/j.neulet.2010.09.061]
9. Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PloS One 2013; 8: e55375. [DOI:10.1371/journal.pone.0055375]
10. Copps K, White M. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55: 2565-2582. [DOI:10.1007/s00125-012-2644-8]
11. da Conceição F S, Ngo-Abdalla S, Houzel J-C, Rehen S K. Murine model for Parkinson’s disease: from 6-OH dopamine lesion to behavioral test. JoVE (Journal of Visualized Experiments) 2010: e1376. [DOI:10.3791/1376]
12. Drouin-Ouellet J, St-Amour I, Saint-Pierre M, Lamontagne-Proulx J, Kriz J, Barker R A, et al. Toll-like receptor expression in the blood and brain of patients and a mouse model of Parkinson’s disease. International Journal of Neuropsychopharmacology 2015; 18. [DOI:10.1093/ijnp/pyu103]
13. Duka T, Duka V, Joyce J N, Sidhu A. α-Synuclein contributes to GSK-3β-catalyzed Tau phosphorylation in Parkinson’s disease models. The FASEB Journal 2009; 23: 2820-2830. [DOI:10.1096/fj.08-120410]
14. Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, et al. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 2013; 61: 349-360. [DOI:10.1002/glia.22437]
15. Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Molecular Neurobiology 2013; 47: 145-171. [DOI:10.1007/s12035-012-8339-9]
16. Gorecki A M, Anyaegbu C C, Anderton R S. TLR2 and TLR4 in Parkinson’s disease pathogenesis: the environment takes a toll on the gut. Translational Neurodegeneration 2021; 10: 1-19. [DOI:10.1186/s40035-021-00271-0]
17. Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. Journal of Neuroinflammation 2022; 19: 1-21. [DOI:10.1186/s12974-022-02496-w]
18. Heras-Sandoval D, Pérez-Rojas J M, Hernández-Damián J, Pedraza-Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cellular Signalling 2014; 26: 2694-2701. [DOI:10.1016/j.cellsig.2014.08.019]
19. Huang N-Q, Jin H, Zhou S-y, Shi J-s, Jin F. TLR4 is a link between diabetes and Alzheimer’s disease. Behavioural Brain Research 2017; 316: 234-244. [DOI:10.1016/j.bbr.2016.08.047]
20. Hughes C D, Choi M L, Ryten M, Hopkins L, Drews A, Botía J A, et al. Picomolar concentrations of oligomeric alpha-synuclein sensitizes TLR4 to play an initiating role in Parkinson’s disease pathogenesis. Acta Neuropathologica 2019; 137: 103-120. [DOI:10.1007/s00401-018-1919-7]
21. Hunter R L, Dragicevic N, Seifert K, Choi D Y, Liu M, Kim H C, et al. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. Journal of Neurochemistry 2007; 100: 1375-1386. [DOI:10.1111/j.1471-4159.2006.04327.x]
22. Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, et al. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson’s disease. CNS Neuroscience & Therapeutics 2021; 27: 308-319. [DOI:10.1111/cns.13609]
23. Kam T-I, Hinkle J T, Dawson T M, Dawson V L. Microglia and astrocyte dysfunction in parkinson’s disease. Neurobiology of Disease 2020; 144: 105028. [DOI:10.1016/j.nbd.2020.105028]
24. Kim B, Feldman E L. Insulin resistance in the nervous system. Trends in Endocrinology & Metabolism 2012; 23: 133-141. [DOI:10.1016/j.tem.2011.12.004]
25. Kim J J, Sears D D. TLR4 and insulin resistance. Gastroenterology Research and Practice 2010; 2010. [DOI:10.1155/2010/212563]
26. Kim Y S, Joh T H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Experimental & Molecular Medicine 2006; 38: 333-347. [DOI:10.1038/emm.2006.40]
27. Knudsen L, Hansen B F, Jensen P, Pedersen T Å, Vestergaard K, Schäffer L, et al. Agonism and antagonism at the insulin receptor. PloS One 2012; 7: e51972. [DOI:10.1371/journal.pone.0051972]
28. La Vitola P, Balducci C, Baroni M, Artioli L, Santamaria G, Castiglioni M, et al. Peripheral inflammation exacerbates α-synuclein toxicity and neuropathology in Parkinson’s models. Neuropathology and Applied Neurobiology 2021; 47: 43-60. [DOI:10.1111/nan.12644]
29. Li D W, Liu Z Q, Chen W, Yao M, Li G R. Association of glycogen synthase kinase‑3β with Parkinson’s disease. Molecular Medicine Reports 2014; 9: 2043-2050. [DOI:10.3892/mmr.2014.2080]
30. Li N, Zhang X, Dong H, Zhang S, Sun J, Qian Y. Lithium ameliorates LPS-induced astrocytes activation partly via inhibition of toll-like receptor 4 expression. Cellular Physiology and Biochemistry 2016; 38: 714-725. [DOI:10.1159/000443028]
31. Liu M, Bing G. Lipopolysaccharide animal models for Parkinson’s disease. Parkinson’s Disease 2011; 2011. [DOI:10.4061/2011/327089]
32. Lv Y-Q, Yuan L, Sun Y, Dou H-W, Su J-H, Hou Z-P, et al. Long-term hyperglycemia induces α-synuclein aggregation and dopaminergic neuronal loss in parkinson’s disease mouse model. Translational Neurodegeneration 2021; 11:14. [DOI:10.21203/rs.3.rs-961629/v1]
33. Ma L, Wang J, Li Y. Insulin resistance and cognitive dysfunction. Clinica Chimica Acta 2015; 444: 18-23. [DOI:10.1016/j.cca.2015.01.027]
34. Maciejczyk M, Żebrowska E, Chabowski A. Insulin resistance and oxidative stress in the brain: what’s new? International Journal of Molecular Sciences 2019; 20: 874. [DOI:10.3390/ijms20040874]
35. Martinez P A. Evaluation of Biogenic Aldehydes as Therapeutic Targets in Parkinson’S Disease. Current Opinion in Toxicology 2019.
36. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neuroscience Letters 1996; 211: 13-16. [DOI:10.1016/0304-3940(96)12706-3]
37. Mollenhauer B, Zimmermann J, Sixel-Döring F, Focke N K, Wicke T, Ebentheuer J, et al. Baseline predictors for progression 4 years after Parkinson’s disease diagnosis in the De Novo Parkinson Cohort (DeNoPa). Movement Disorders 2019; 34: 67-77. [DOI:10.1002/mds.27492]
38. Moon H C, Won S Y, Kim E G, Kim H K, Cho C B, Park Y S. Effect of optogenetic modulation on entopeduncular input affects thalamic discharge and behavior in an AAV2-α-synuclein-induced hemiparkinson rat model. Neuroscience Letters 2018; 662: 129-135. [DOI:10.1016/j.neulet.2017.10.019]
39. Morris J, Bomhoff G, Gorres B, Davis V, Kim J, Lee P-P, et al. Insulin resistance impairs nigrostriatal dopamine function. Experimental Neurology 2011; 231: 171-180. [DOI:10.1016/j.expneurol.2011.06.005]
40. Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, et al. IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathology 2020; 30: 1102-1118. [DOI:10.1111/bpa.12886]
41. Oliynyk Z, Marynchenko A, Rudyk M, Dovbynchuk T, Dzyubenko N, Tolstanova G. Functional changes in peripheral phagocytes in rats with LPS-induced Parkinson’s Disease. Mugla Journal of Science and Technology 2021; 7: 73-78. [DOI:10.22531/muglajsci.957174]
42. Ou R, Wei Q, Hou Y, Zhang L, Liu K, Lin J, et al. Effect of diabetes control status on the progression of Parkinson’s disease: A prospective study. Annals of Clinical and Translational Neurology 2021; 8: 887-897. [DOI:10.1002/acn3.51343]
43. Pagano G, Polychronis S, Wilson H, Giordano B, Ferrara N, Niccolini F, et al. Diabetes mellitus and Parkinson disease. Neurology 2018; 90: 1654-1662. [DOI:10.1212/WNL.0000000000005475]
44. Perez-Pardo P, Dodiya H B, Engen P A, Forsyth C B, Huschens A M, Shaikh M, et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 2019; 68: 829-843. [DOI:10.1136/gutjnl-2018-316844]
45. Pignalosa F C, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, et al. Diabetes and cognitive impairment: a role for glucotoxicity and dopaminergic dysfunction. International Journal of Molecular Sciences 2021; 22: 12366. [DOI:10.3390/ijms222212366]
46. Qin X-Y, Zhang S-P, Cao C, Loh Y P, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurology 2016; 73: 1316-1324. [DOI:10.1001/jamaneurol.2016.2742]
47. Ramalingam M, Kim S-J. Protective effects of activated signaling pathways by insulin on C6 glial cell model of MPP+-induced Parkinson’s disease. Journal of Receptors and Signal Transduction 2017; 37: 100-107. [DOI:10.3109/10799893.2016.1171342]
48. Rannikko E H, Weber S S, Kahle P J. Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neuroscience 2015; 16: 1-11. [DOI:10.1186/s12868-015-0192-0]
49. Sandyk R. The relationship between diabetes mellitus and Parkinson’s disease. International Journal of Neuroscience 1993; 69: 125-130. [DOI:10.3109/00207459309003322]
50. Sarkar S, Davies J E, Huang Z, Tunnacliffe A, Rubinsztein D C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. Journal of Biological Chemistry 2007; 282: 5641-5652. [DOI:10.1074/jbc.M609532200]
51. Sharma S, Taliyan R. High fat diet feeding induced insulin resistance exacerbates 6-OHDA mediated neurotoxicity and behavioral abnormalities in rats. Behavioural Brain Research 2018; 351: 17-23. [DOI:10.1016/j.bbr.2018.05.025]
52. Shukuri M, Uchino M, Sakamaki T, Onoe S, Hosoi R, Todoroki K, et al. Ex vivo imaging and analysis of ROS generation correlated with microglial activation in rat model with acute neuroinflammation induced by intrastriatal injection of LPS. Biochemical and Biophysical Research Communications 2021; 584: 101-106. [DOI:10.1016/j.bbrc.2021.11.008]
53. Song J, Kim J. Degeneration of dopaminergic neurons due to metabolic alterations and Parkinson’s disease. Frontiers in Aging Neuroscience 2016; 8: 65. [DOI:10.3389/fnagi.2016.00065]
54. Speed N, Saunders C, Davis A R, Owens W A, Matthies H J, Saadat S, et al. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PloS One 2011; 6: e25169. [DOI:10.1371/journal.pone.0025169]
55. Suzuki Y, Hattori K, Hamanaka J, Murase T, Egashira Y, Mishiro K, et al. Pharmacological inhibition of TLR4-NOX4 signal protects against neuronal death in transient focal ischemia. Scientific Reports 2012; 2: 896. [DOI:10.1038/srep00896]
56. Tain L S, Mortiboys H, Tao R N, Ziviani E, Bandmann O, Whitworth A J. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neuroscience 2009; 12: 1129-1135. [DOI:10.1038/nn.2372]
57. Tufekci K U, Genc S, Genc K. The endotoxin-induced neuroinflammation model of Parkinson’s disease. Parkinson’s Disease 2011; 2011. [DOI:10.4061/2011/487450]
58. Vargas A M, Rivera-Rodriguez D E, Martinez L R. Methamphetamine alters the TLR4 signaling pathway, NF-κB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Molecular Immunology 2020; 121: 159-166. [DOI:10.1016/j.molimm.2020.03.013]
59. Vijiaratnam N, Girges C, Auld G, Chau M, Maclagan K, King A, et al. Exenatide once weekly over 2 years as a potential disease-modifying treatment for Parkinson’s disease: protocol for a multicentre, randomised, double blind, parallel group, placebo controlled, phase 3 trial: The ‘Exenatide-PD3’study. BMJ Open 2021; 11: e047993. [DOI:10.1136/bmjopen-2020-047993]
60. Vikram A, Jena G. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats. Biochemical and Biophysical Research Communications 2010; 398: 260-265. [DOI:10.1016/j.bbrc.2010.06.070]
61. Yang Y-W, Hsieh T-F, Li C-I, Liu C-S, Lin W-Y, Chiang J-H, et al. Increased risk of Parkinson disease with diabetes mellitus in a population-based study. Medicine 2017; 96. [DOI:10.1097/MD.0000000000005921]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.