Volume 26, Issue 2 (June 2022)                   Physiol Pharmacol 2022, 26(2): 168-177 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azarkish F, Atash Ab Parvar A, Nematbakhsh M, Dehghani A. Time course of renal ischemia/reperfusion and distance organ: lung dysfunction in male and female rats. Physiol Pharmacol. 2022; 26 (2) :168-177
URL: http://ppj.phypha.ir/article-1-1714-en.html
Abstract:   (821 Views)
Introduction: Renal ischemia/reperfusion injury (IRI) may influence distance organ such as lung. The severity of IRI induced- lung insult can be affected by gender and reperfusion time alteration. The aim of this study was to determine gender differences in renal IR inducedlung injury in different reperfusion time. Methods: Eighty male and female rats were assigned into 8 groups, 4 groups in each gender including: sham, renal ischemia for 45min by clamping renal vessels followed by 3, 24 or 48h reperfusion. Blood samples were obtained for measuring the serum level of blood urea nitrogen (BUN), creatinine (Cr), nitrite and malondialdehyde (MDA). The kidneys and lung tissues were removed and used for MDA and nitrite measurements and the histological changes evaluation. The lung water content was calculated. Results: In both genders, the rise in Cr and BUN reached the peak at 24h reperfusion. A significant increment was seen in female serum level of nitrite compared with males after 3h reperfusion. The renal MDA level of male increased during 3h reperfusion but not seen in females. The enhanced lung and renal tissues damages were depended to reperfusion time in both genders. The water content of lung was reduced in 3h of reperfusion groups. Conclusion: Sex effects and the time of reperfusion may be the important factors to consider clinical therapeutic of renal IRI as well as its impact on remote organs.
Full-Text [PDF 1714 kb]   (132 Downloads)    

1. Abogresha NM, Greish SM, Abdelaziz EZ, Khalil WF. Remote effect of kidney ischemiareperfusion injury on pancreas: role of oxidative stress and mitochondrial apoptosis. Arch Med Sci 2016; 12: 252. [DOI:10.5114/aoms.2015.48130]
2. Azarkish F, Nematbakhsh M, Fazilati M, Talebi A, Pilehvarian AA, Pezeshki Z, et al. Nacetylcysteine prevents kidney and lung disturbances in renal ischemia/reperfusion injury in rat. Int J Prev Med 2013; 4: 1139-46.
3. Barp J, Araújo ASdR, Fernandes TRG, Rigatto KV, Llesuy S, Belló-Klein A, et al. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res 2002; 35: 1075-81. [DOI:10.1590/S0100879X2002000900008]
4. Basu RK, Wheeler, DS. Effects of ischemic acute kidney injury on lung water balance: nephrogenic pulmonary edema? Pulm Med 2011; 2011. [DOI:10.1155/2011/414253]
5. Basu RK, Wheeler DS. Kidney-lung cross-talk and acute kidney injury. Pediatr Nephrol 2013; 28: 2239-48. [DOI:10.1007/s00467-012-23863]
6. Campanholle G, Landgraf RG, Gonçalves GM, Paiva VN, Martins JDO, Wang PHM, Teixeira VPA. Lung inflammation is induced by renal ischemia and reperfusion injury as part of the systemic inflammatory syndrome. Inflamm Res 2010; 59: 861-9. [DOI:10.1007/s00011-010-0198-0]
7. Choi EK, Jung H, Kwak KH, Yi SJ, Lim JA, Park SH, et al. Inhibition of oxidative stress in renal ischemia-reperfusion injury. Anesth Analg 2017; 124: 204-13. [DOI:10.1213/ANE.0000000000001565]
8. Dehghani A, Saberi S, Nematbakhsh M. Role of Mas receptor antagonist A799 in renal blood flow response to Ang 1-7 after bradykinin administration in ovariectomized estradiol-treated rats. Adv Pharmacol Pharm Sci 2015; 2015. [DOI:10.1155/2015/801053]
9. Doi K, Ishizu T, Fujita T, Noiri E. Lung injury following acute kidney injury: kidney-lung crosstalk. Clin Exp Nephrol 2011; 15: 464-70. [DOI:10.1007/s10157-011-0459-4]
10. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox biology 2015; 6: 524-51. [DOI:10.1016/j.redox.2015.08.020]
11. Hassoun HT, Lie ML, Grigoryev DN, Liu M, Tuder RM, Rabb H. Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis. Am J Physiol Renal Physiol 2009; 297: 125-37. [DOI:10.1152/ajprenal.90666.2008]
12. Ibrahim IY, Elbassuoni EA, Ragy MM, Habeeb WN. Gender difference in the development of cardiac lesions following acute ischemic-reperfusion renal injury in albino rats. Gen Physiol Biophys 2013; 32: 421-8. [DOI:10.4149/gpb_2013036]
13. Kao CC, Yang WS, Fang JT, Liu KD, Wu VC. Remote organ failure in acute kidney injury. J Formos Med Assoc 2019; 118: 859-66. [DOI:10.1016/j.jfma.2018.04.005]
14. Kei S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 1978; 90: 37-43. [DOI:10.1016/0009-8981(78)90081-5]
15. Kher A, Meldrum KK, Wang M, Tsai BM, Pitcher JM, Meldrum DR. Cellular and molecular mechanisms of sex differences in renal ischemia-reperfusion injury. Cardiovasc Res 2005; 67: 594-603. [DOI:10.1016/j.cardiores.2005.05.005]
16. Kiris I, Kapan S, Kılbas A, Yılmaz N, Altuntaş I, Karahan N, et al. The protective effect of erythropoietin on renal injury induced by abdominal aortic-ischemia-reperfusion in rats. J Surg Res 2008; 149: 206-13. [DOI:10.1016/j.jss.2007.12.752]
17. Klein CL, Hoke TS, Fang WF, Altmann CJ, Douglas IS, Faubel, S. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int 2008; 74: 901-9. [DOI:10.1038/ki.2008.314]
18. Ko SF, Yip HK, Zhen YY, Lee CC, Lee CC, Huang SJ, et al. Severe bilateral ischemicreperfusion renal injury: hyperacute and acute changes in apparent diffusion coefficient, T1, and T2 mapping with immunohistochemical correlations. Sci Rep 2017; 7: 1-10. [DOI:10.1038/s41598-017-01895-x]
19. Kramer AA, Postler G, Salhab KF, Mendez C, Carey LC, Rabb H. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int 1999; 55: 2362-7. [DOI:10.1046/j.1523-1755.1999.00460.x]
20. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, et al. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 2003; 112: 915-923. [DOI:10.1172/JCI200318859]
21. Lü P, Liu F, Wang CY, Chen DD, Yao Z, Tian Y,. Gender differences in hepatic ischemic reperfusion injury in rats are associated with endothelial cell nitric oxide synthase-derived nitric oxide. World J Gastroenterol 2005; 11: 3441. [DOI:10.3748/wjg.v11.i22.3441]
22. Moeini M, Nematbakhsh M, Fazilati M, Talebi A, Pilehvarian AA, Azarkish F, et al. Protective role of recombinant human erythropoietin in kidney and lung injury following renal bilateral ischemia-reperfusion in rat model. Int J Prev Med 2013; 4: 648-55.
23. Müller V, Losonczy G, Heemann U, Vannay Á, Fekete A, Reusz G, et al. Sexual dimorphism in renal ischemia-reperfusion injury in rats: possible role of endothelin. Kidney Int 2002; 62: 1364- 71. [DOI:10.1111/j.1523-1755.2002.kid590.x]
24. Neugarten J, Golestaneh L, Kolhe NV. Sex differences in acute kidney injury requiring dialysis. BMC Nephrol 2018; 19: 131. [DOI:10.1186/s12882-018-0937-y P]
25. aladino JD, Hotchkiss JR, Rabb H. Acute kidney injury and lung dysfunction: a paradigm for remote organ effects of kidney disease? Microvasc Res 2009; 77: 8-12. [DOI:10.1016/j.mvr.2008.09.001]
26. Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV. Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 2004; 279: 52282-92. [DOI:10.1074/jbc.M407629200]
27. Reckelhoff JF, Hennington BS, Moore AG, Blanchard EJ, Cameron J. Gender differences in the renal nitric oxide (NO) system. Am J Hypertens 1998; 11: 97-104. [DOI:10.1016/S0895-7061(97)00360-9]
28. Saberi S, Dehghani A, Nematbakhsh M. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats. Res Pharm Sci 2016; 11: 65-72. [DOI:10.1155/2015/801053]
29. Schofield ZV, Woodruff TM, Halai R, Wu M CL, Cooper MA. Neutrophils-a key component of ischemia-reperfusion injury. Shock 2013; 40: 463-70. [DOI:10.1097/SHK.0000000000000044]
30. Sener G, Sehirli AÖ, Keyer‐Uysal M, Arbak S, Ersoy Y, Yeğen BÇ. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat. J Pineal Res 2002; 32: 120-6. [DOI:10.1034/j.1600-079x.2002.1848.x]
31. Tanaka R, Yazawa M, Morikawa Y, Tsutsui H, Ohkita M, Yukimura T, et al. Sex differences in ischaemia/reperfusion-induced acute kidney injury depends on the degradation of noradrenaline by monoamine oxidase. Clin Exp Pharmacol Physiol 2017; 44: 371-7. [DOI:10.1111/1440-1681.12713]
32. Tanaka R, Tsutsui H, Ohkita M, Takaoka M, Yukimura T, Matsumura, Y. Sex differences in ischemia/reperfusion-induced acute kidney injury are dependent on the renal sympathetic nervous system. Eur J Pharmacol 2013; 714: 397-404. [DOI:10.1016/j.ejphar.2013.07.008]
33. Tripatara P, Patel NSA, Webb A, Rathod K, Lecomte F MJ, Mazzon E, et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol 2007; 18: 570-80. [DOI:10.1681/ASN.2006050450]
34. Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 2012; 303: 1487-94. [DOI:10.1152/ajprenal.00352.2012]
35. Yang Shun, Chou Wei-Ping, Pei Ling. Effects of propofol on renal ischemia/reperfusion injury in rats. Exp Ther Med 2013; 6: 1177-83. [DOI:10.3892/etm.2013.1305]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.