Volume 26, Issue 2 (June 2022)                   Physiol Pharmacol 2022, 26(2): 138-144 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahidi S, Vishteh M, komaki A, Sadeghian R. The effects of sildenafil on the hippocampal longterm potentiation in male rats. Physiol Pharmacol. 2022; 26 (2) :138-144
URL: http://ppj.phypha.ir/article-1-1752-en.html
Abstract:   (927 Views)
Introduction: The hippocampal nitric oxide/cGMP signaling pathway plays a crucial role in memory processing. Phosphodiesterase interacts with this signaling pathway. There are controversial reports regarding the effect of sildenafil, a phosphodiesterase inhibitor, on learning and memory. Therefore, the effects of acute administration (intrahippocampal/ intra-dentate gyrus injection) of sildenafil on long-term potentiation (LTP) of rats were investigated. Methods: The rats were anesthetized with urethane and placed in a stereotaxic device for field potential recording. After ensuring a steady-state baseline response, a single intraperitoneal injection of saline or sildenafil (2 and10 µg/kg) was done. The population spike amplitude, the excitatory postsynaptic potentials (EPSPs) slope and paired-pulse stimuli (as an inhibitory interneuron) were compared between groups. Results: The results showed that population spike amplitude and EPSP slope significantly increased after sildenafil administration (10µg/kg) following titanic stimulation compared with the saline group. However, the sildenafil (2µg/kg) and control groups showed no difference regarding population spike amplitude and EPSP slope. Sildenafil had no significant effects on recurrent inhibition. Conclusion: The obtained results indicated that acute administration of sildenafil improved LTP via direct effects on the hippocampus of intact rats. Thus, sildenafil may enhance learning and memory processing by modulating the hippocampal synapse.
Full-Text [PDF 1279 kb]   (175 Downloads)    
Types of Manuscript: Experimental research article | Subject: Blood and Immune System

1. Ahmadimoghaddam D, Zarei M, Mohammadi S, Izadidastenaei Z, Salehi I. Bupleurum falcatum L. alleviates nociceptive and neuropathic pain: potential mechanisms of action. J Ethnopharmacol 2021; 113990. [DOI:10.1016/j.jep.2021.113990]
2. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 2006; 58: 488-520. [DOI:10.1124/pr.58.3.5]
3. Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry 2021; 1-13. [DOI:10.1038/s41380-020-00997-9]
4. Devan BD, Sierra-Mercado Jr D, Jimenez M, Bowker JL, Duffy KB, Spangler EL, et al. Phosphodiesterase inhibition by sildenafil citrate attenuates the learning impairment induced by blockade of cholinergic muscarinic receptors in rats. Pharmacol Biochem Behav 2004; 79: 691-9. [DOI:10.1016/j.pbb.2004.09.019]
5. Domek-Łopacińska KU, Strosznajder JB. Cyclic GMP and nitric oxide synthase in aging and Alzheimer’s disease. Mol Neurobiol 2010; 41: 129-37. [DOI:10.1007/s12035-010-8104-x]
6. Erceg S, Monfort P, Hernández-Viadel M, Rodrigo R, Montoliu C, Felipo V. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatol 2005; 41: 299-306. [DOI:10.1002/hep.20565]
7. Feil R, Kleppisch T. NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 2008: 529-60. [DOI:10.1007/978-3-540-74805-2_16]
8. García-Osta A, Cuadrado-Tejedor M, García-Barroso C, Oyarzábal J, Franco R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem Neurosci 2012; 3: 832-44. [DOI:10.1021/cn3000907]
9. Hofmann F. The cGMP system: components and function. Biol Chem 2020; 401: 447-69. [DOI:10.1515/hsz-2019-0386]
10. Jackson G, Gillies H, Osterloh I. Past, present, and future: a 7‐year update of Viagra®(sildenafil citrate). Int J Clin Pract 2005; 59: 680-91. [DOI:10.1111/j.1368-5031.2005.00578.x]
11. Mohammadi S. Effects of hippocampal microinjection of irisin, an exercise-induced myokine, on spatial and passive avoidance learning and memory in male rats. Int J Pept Res Ther 2020; 26. [DOI:10.1007/s10989-019-09842-2]
12. Mollace V, Rodino P, Massoud R, Rotiroti D, Nistico G. Age-dependent changes of NO synthase activity in the rat brain. Biochem Biophys Res Commun 1995; 215: 822-7. [DOI:10.1006/bbrc.1995.2537]
13. Ostrovskaya OI, Cao G, Eroglu C, Harris KM. Developmental onset of enduring long‐term potentiation in mouse hippocampus. Hippocampus 2020; 30: 1298-312. [DOI:10.1002/hipo.23257]
14. Ota KT, Pierre VJ, Ploski JE, Queen K, Schafe GE. The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase. Learn Mem 2008; 15: 792-805. [DOI:10.1101/lm.1114808]
15. Patil CS, Singh VP, Kulkarni SK. Modulatory effect of sildenafil in diabetes and electroconvulsive shock-induced cognitive dysfunction in rats. Pharmacol Rep 2006; 58: 373.
16. Puzzo D, Sapienza S, Arancio O, Palmeri A. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 2008; 4: 371. [DOI:10.2147/NDT.S2447]
17. Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O. Amyloid-β peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci 2005; 25: 6887-97. [DOI:10.1523/JNEUROSCI.5291-04.2005]
18. Rutten K, De Vente J, Şik A, Markerink-Van Ittersum M, Prickaerts JH, Blokland A. The selective PDE5 inhibitor, sildenafil, improves object memory in Swiss mice and increases cGMP levels in hippocampal slices. Behav Brain Res 2005; 164: 11-6. [DOI:10.1016/j.bbr.2005.04.021]
19. Sanderson TM, Sher E. The role of phosphodiesterases in hippocampal synaptic plasticity. Neuropharmacol 2013; 74: 86-95. [DOI:10.1016/j.neuropharm.2013.01.011]
20. Shafiei M, Mahmoudian M, Rostami P, Nemati F. Effect of sildenafil (Viagra) on memory retention of a passive avoidance response in rats. Acta Physiol Hung 2006; 93: 53-9. [DOI:10.1556/APhysiol.93.2006.1.6]
21. Shahidi S, Arjipour M, Komaki A, Mahmoodi M. Differential effects of sildenafil (viagra) on processing steps of spatial learning and memory in rat. Avicenna J Neuro Psycho Physiol 2014; 1: 20-5. [DOI:10.17795/ajnpp-18671]
22. Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019a; 69: 409-19. [DOI:10.1007/s12576-019-00660-1]
23. Shahidi S, Komaki A, Sadeghian R, Soleimani Asl SS. Effect of a 5-HT1D receptor agonist on the reinstatement phase of the conditioned place preference test and hippocampal long-term potentiation in methamphetamine-treated rats. Brain Res 2018a; 1698: 151-60. [DOI:10.1016/j.brainres.2018.07.030]
24. Shahidi S, Mehrpour O, Sadeghian R, Soleimani Asl SS, Komaki A. Alteration level of hippocampus BDNF expression and long-term potentiation upon microinjection of BRL15572 hydrochloride in a rat model of methamphetamine relapse. Brain Res Bull 2019b; 148: 18-24. [DOI:10.1016/j.brainresbull.2019.03.008]
25. Shahidi S, Sadeghian R, Komaki A, Asl SS. Intracerebroventricular microinjection of the 5-HT1F receptor agonist LY 344864 inhibits methamphetamine conditioned place preference reinstatement in rats. Pharmacol Biochem Behav 2018b; 173: 27-35. [DOI:10.1016/j.pbb.2018.08.001]
26. Shahidi S, Rabiee L, Komaki A, Sadeghian R. High-dose fluoxetine improved long-term potentiation of the hippocampal dentate gyrus in male rats. Physiology and Pharmacology. 2021:223-30. [DOI:10.52547/ppj.25.3.223]
27. Sikandaner HE, Park SY, Kim MJ, Park SN, Yang DW. Neuroprotective effects of sildenafil against oxidative stress and memory dysfunction in mice exposed to noise stress. Behav Brain Res 2017; 319: 37-47. [DOI:10.1016/j.bbr.2016.10.046]
28.  Wirtz-Brugger F, Giovanni A. Guanosine 3′, 5′-cyclic monophosphate mediated inhibition of cell death induced by nerve growth factor withdrawal and β-amyloid: protective effects of Propentofylline. Neurosci 2000; 99: 737-50. [DOI:10.1016/S0306-4522(00)00243-8]
29. Wu Y, Li Z, Huang YY, Wu D, Luo HB. Novel phosphodiesterase inhibitors for cognitive improvement in Alzheimer’s disease. J Med Chem 2018; 61: 5467-83. [DOI:10.1021/acs.jmedchem.7b01370]
30. Zarei M, Ahmadimoghaddam D, Mohammadi S. Artemisia biennis Willd.: anti-nociceptive effects and possible mechanisms of action. J Ethnopharmacol 2021; 268: 113604. [DOI:10.1016/j.jep.2020.113604]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.