Accepted Manuscripts                   Back to the articles list | Back to browse issues page


XML Print


Abstract:   (465 Views)
Background
Neuroinflammation is a primary pathophysiological condition that is associated with cognitive impairment and neurodegenerative diseases. The present study was designed to evaluate the effects of enriched environment (EE) on passive avoidance memory impairment caused by lipopolysaccharide (LPS) induced neuroinflammation.
Methods
Twenty-eight male Wistar rats were assigned into the following groups: 1) Control (C), 2) Control + enriched environment (CE), 3) LPS (L), and 4) LPS + EE (LE). LPS injection (1mg/kg/i.p.) was done on days 1, 3, 5 and 7 of experiment. Two different housing conditions were used in this experiment, including a standard environment house (SEH) and an enriched environment house (EEH). The passive avoidance (PA) task was used to examine animals learning and memory performance. The hippocampal level of interleukin-6 (IL-6) and Brain-derived neurotrophic factor (BDNF), was also measured by using sandwich-ELISA method.
Results
Obtained data indicated that LPS significantly impaired PA memory and decreased the step-through latency (STL), and increased the time spent in the dark compartment (TDC) (p<0.001) of the LPS treated group compared to the control group. On the other hand, EE housing could significantly ameliorate memory impairment. Hippocampal IL-6 level was increased and BDNF was decreased in the LPS group (P<0.01), whereas EE could decrease and increase IL-6 and BDNF levels in the LPS+EE group (P<0.05), respectively.
Conclusion
EE should probably be considered as an alternative strategy in neuro-inflammatory diseases to minimize the memory impairment.
     

attachement [PDF 842 KB]  (24 Download)
References
1. Abdel-Mouttalib O. Nociceptin/Orphanin-FQ Modulation of Learning and Memory. In: Vitamins and Hormones, Elsevier 2015; 323-345. [DOI:10.1016/bs.vh.2014.10.006]
2. Ahmadalipour A, Sadeghzadeh J, Samaei SA, Rashidy-Pour A. Protective effects of enriched environment against transient cerebral ischemia-induced impairment of passive avoidance memory and long-term potentiation in rats. Basic Clin Neurosci 2017; 8: 443-452. [DOI:10.29252/nirp.bcn.8.6.443]
3. Aminyavari S, Zahmatkesh M, Farahmandfar M, Khodagholi F, Dargahi L, Zarrindast MR. Protective role of Apelin-13 on amyloid β25-35-induced memory deficit; Involvement of autophagy and apoptosis process. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89: 322- 334. [DOI:10.1016/j.pnpbp.2018.10.005]
4. Arango C, Díaz-Caneja CM, McGorry PD, Rapoport J, Sommer IE, Vorstman JA, McDaid D, Marín O, Serrano-Drozdowskyj E, Freedman R, Carpenter W. Preventive strategies for mental health. Lancet Psychiatry 2018; 5: 591-604. [DOI:10.1016/S2215-0366(18)30057-9]
5. Badshah H, Ali T, Rehman S ur, Amin F ul, Ullah F, Kim TH, Kim MO. Protective Effect of Lupeol Against Lipopolysaccharide-Induced Neuroinflammation via the p38/c-Jun N-Terminal Kinase Pathway in the Adult Mouse Brain. J Neuroimmune Pharmacol 2016; 11: 48-60. [DOI:10.1007/s11481-015-9623-z]
6. Ball NJ, Mercado E, Orduña I. Enriched environments as a potential treatment for developmental disorders: A critical assessment. Front Psychol 2019; 10: 466. [DOI:10.3389/fpsyg.2019.00466]
7. Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 2017; 96: 173-184. [DOI:10.1016/j.cyto.2017.04.015]
8. Boehme F, Gil‐Mohapel J, Cox A, Patten A, Giles E, Brocardo PS, Christie BR. Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders. Eur J Neurosci 2011; 33: 1799-1811. [DOI:10.1111/j.1460- 9568.2011.07676.x]
9. Brod S, Gobbetti T, Gittens B, Ono M, Perretti M, D'Acquisto F. The impact of environmental enrichment on the murine inflammatory immune response. JCI insight 2017; 2: e90723 [DOI:10.1172/jci.insight.90723]
10. Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJL, Furman D, Shen-Orr S, Dekker CL, Swan GE, Butte AJ. Variation in the human immune system is largely driven by non-heritable influences. Cell 2015; 160: 37-47. [DOI:10.1016/j.cell.2014.12.020]
11. Calixto O-J, Anaya J-M. Socioeconomic status. The relationship with health and autoimmune diseases. Autoimmun Rev 2014; 13: 654-641. [DOI:10.1016/j.autrev.2013.12.002]
12. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992; 149: 2736-2741.
13. Chen J-Y, Yu Y, Yuan Y, Zhang Y-J, Fan X-P, Yuan S-Y, Zhang J-C, Yao S-L. Enriched housing promotes post-stroke functional recovery through astrocytic HMGB1-IL-6-mediated angiogenesis. Cell death Discov 2017; 3:1-10. [DOI:10.1038/cddiscovery.2017.54]
14. Codeluppi S, Fernandez-Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, Olson L, Gray NS, Svensson CI, Uhlen P. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3KmTOR-calcium signaling. PLoS One 2014; 9: e92649. [DOI:10.1371/journal.pone.0092649]
15. Devasahayam AJJ, Kelly LPP, Williams JBB, Moore CS, Ploughman M. Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis. Biomolecules 2021; 11: 504. [DOI:10.3390/biom11040504]
16. Font-Nieves M, Sans-Fons MG, Gorina R, Bonfill-Teixidor E, Salas-Peŕdomo A, MaŕquezKisinousky L, Santalucia T, Planas AM. Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E 2 production in astrocytes. J Biol Chem 2012; 287: 6454-6468. [DOI:10.1074/jbc.M111.327874]
17. Frühauf-Perez PK, Temp FR, Pillat MM, Signor C, Wendel AL, Ulrich H, Mello CF, Rubin MA. Spermine protects from LPS-induced memory deficit via BDNF and TrkB activation. Neurobiol Learn Mem 2018; 149: 135-143. [DOI:10.1016/j.nlm.2018.02.012]
18. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25: 1822-1832. [DOI:10.1038/s41591-019-0675-0]
19. Giacobbo BL, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, Vries EFJ de. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 2019; 56: 3395-3212. [DOI:10.1007/s12035-018-1283-6]
20. Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ. Poly I: C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun 2013; 28: 170-181. [DOI:10.1016/j.bbi.2012.11.010]
21. Giridharan VV, Masud F, Petronilho F, Dal-Pizzol F, Barichello T. Infection-induced systemic inflammation is a potential driver of Alzheimer's disease progression. Front Aging Neurosci 2019; 11: 122. [DOI:10.3389/fnagi.2019.00122]
22. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms Underlying Inflammation in Neurodegeneration. Cell 2010; 140: 918-934. [DOI:10.1016/j.cell.2010.02.016]
23. Hammami Abrandabadi A, Miladi-Gorji H, Bigdeli I. Effect of environmental enrichment on physical and psychological dependence signs and voluntary morphine consumption in morphinedependent and morphine-withdrawn rats. Behav Pharmacol 2016 27: 270-278. [DOI:10.1097/FBP.0000000000000197]
24. Huang L-K, Chao S-P, Hu C-J. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27:1-13. [DOI:10.1186/s12929-019-0609-7]
25. Kamer AR, Pirraglia E, Tsui W, Rusinek H, Vallabhajosula S, Mosconi L, Yi L, McHugh P, Craig RG, Svetcov S, Linker R, Shi C, et al. Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol Aging 2015; 36: 627-633. [DOI:10.1016/j.neurobiolaging.2014.10.038]
26. Kassa J, Bajgar J, Kuca K, Jun D. Behavioral Toxicity of Nerve Agents. In: Handbook of Toxicology of Chemical Warfare Agents: Second Edition, Elsevier 2015; 477-487. [DOI:10.1016/B978-0-12-800159-2.00035-X]
27. Kazlauckas V, Pagnussat N, Mioranzza S, Kalinine E, Nunes F, Pettenuzzo L, Souza DO, Portela LV, Porciúncula LO, Lara DR. Enriched environment effects on behavior, memory and BDNF in low and high exploratory mice. Physiol Behav 2011; 102: 475-480. [DOI:10.1016/j.physbeh.2010.12.025]
28. Keymoradzadeh A, Hedayati ChM, Abedinzade M, Gazor R, Rostampour M, Taleghani BK. Enriched environment effect on lipopolysaccharide-induced spatial learning, memory impairment and hippocampal inflammatory cytokine levels in male rats. Behav Brain Res 2020; 394: 112814. [DOI:10.1016/j.bbr.2020.112814]
29. Khakpour-Taleghani B, Lashgari R, Aavani T, Haghparast A, Naderi N, Motamedi F. The locus coeruleus involves in consolidation and memory retrieval, but not in acquisition of inhibitory avoidance learning task. Behav Brain Res 2008; 189: 257-262. [DOI:10.1016/j.bbr.2008.01.004]
30. Kumar RS, Narayanan SN, Kumar N, Nayak S. Exposure to Enriched Environment Restores Altered Passive Avoidance Learning and Ameliorates Hippocampal Injury in Male Albino Wistar Rats Subjected to Chronic Restraint Stress. Int J Appl basic Med Res 2018; 8: 231-236.
31. Laber K, Veatch LM, Lopez MF, Mulligan JK, Lathers DMR. 2008. Effects of housing density on weight gain, immune function, behavior, and plasma corticosterone concentrations in BALB/c and C57BL/6 mice. J Am Assoc Lab Anim Sci 2008; 47: 16 -23.
32. Lee B, Shim I, Lee H, Hahm DH. Gypenosides attenuate lipopolysaccharide-induced neuroinflammation and anxiety-like behaviors in rats. Animal Cells Syst (Seoul) 2018; 22: 305- 316. [DOI:10.1080/19768354.2018.1517825]
33. Manickavasagam D, Lin L, Oyewumi MO. Nose-to-brain co-delivery of repurposed simvastatin and BDNF synergistically attenuates LPS-induced neuroinflammation. Nanomedicine Nanotechnology, Biol Med 2020; 23: 102107. [DOI:10.1016/j.nano.2019.102107]
34. McQuaid RJ, Audet MC, Anisman H.. Environmental enrichment in male CD-1 mice promotes aggressive behaviors and elevated corticosterone and brain norepinephrine activity in response to a mild stressor. Stress 2012; 15: 354-360. [DOI:10.3109/10253890.2011.623249]
35. Meldolesi J. 2017. Neurotrophin receptors in the pathogenesis, diagnosis and therapy of neurodegenerative diseases. Pharmacol Res 2017; 121: 129-137. [DOI:10.1016/j.phrs.2017.04.024]
36. Nelson LD, Temkin NR, Dikmen S, Barber J, Giacino JT, Yuh E, Levin HS, McCrea MA, Stein MB, Mukherjee P, Okonkwo DO, Diaz-Arrastia R, et al. Recovery after Mild Traumatic Brain Injury in Patients Presenting to US Level i Trauma Centers: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. JAMA Neurol 2019; 76: 1049-1059. [DOI:10.1001/jamaneurol.2019.1313]
37. Nikkhah A, Ghahremanitamadon F, Zargooshnia S, Shahidi S, Soleimani Asl S. Effect of Amyloid β- Peptide on Passive Avoidance Learning in Rats: A Behavioral Study. Avicenna J Neuro Psych Physiol 2014; 1 : e18664. [DOI:10.17795/ajnpp-18664]
38. Noble JM, Scarmeas N, Celenti RS, Elkind MSV, Wright CB, Schupf N, Papapanou PN. Serum IgG antibody levels to periodontal microbiota are associated with incident alzheimer disease. PLoS One 2014; 9: e114959. [DOI:10.1371/journal.pone.0114959]
39. Noorbakhshnia M, Dehkordi NG, Ghaedi K, Esmaeili A, Dabaghi M. Omega-3 fatty acids prevent LPS-induced passive avoidance learning and memory and CaMKII-α gene expression impairments in hippocampus of rat. Pharmacol Reports 2015; 67: 370-375. [DOI:10.1016/j.pharep.2014.10.014]
40. Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer's disease? J Oral Microbiol 2015; 7: 29143. [DOI:10.3402/jom.v7.29143]
41. Patanella AK, Zinno M, Quaranta D, Nociti V, Frisullo G, Gainotti G, Tonali PA, Batocchi AP, Marra C. Correlations between peripheral blood mononuclear cell production of BDNF, TNF‐ alpha, IL‐6, IL‐10 and cognitive performances in multiple sclerosis patients. J Neurosci Res 2010; 88: 1106-1112. [DOI:10.1002/jnr.22276]
42. Phillips C, Baktir MA, Srivatsan M, Salehi A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci 2014; 8: 170. [DOI:10.3389/fncel.2014.00170]
43. Rezvani-Kamran A, Salehi I, Shahidi S, Zarei M, Moradkhani S, Komaki A. Effects of the hydroalcoholic extract of Rosa damascena on learning and memory in male rats consuming a highfat diet. Pharm Biol 2017; 55: 2065-2073. [DOI:10.1080/13880209.2017.1362010]
44. Sampedro-Piquero P, Begega A. Environmental enrichment as a positive behavioral intervention across the lifespan. Curr Neuropharmacol 2017; 15: 459-470. [DOI:10.2174/1570159X14666160325115909]
45. Segovia G, Yagüe AG, García-Verdugo JM, Mora F. Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res Bull 2006; 70: 8-14. [DOI:10.1016/j.brainresbull.2005.11.005]
46. Sheppard O, Coleman MP, Durrant CS. Lipopolysaccharide-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta. J Neuroinflammation 2019; 16: 1-13. [DOI:10.1186/s12974-019-1490- 8]
47. Vasile C. Mental health and immunity. Exp Ther Med 2020; 20: 1. [DOI:10.3892/etm.2020.9341]
48. Vincenti AP De, Ríos AS, Paratcha G, Ledda F. Mechanisms that modulate and diversify BDNF functions: Implications for hippocampal synaptic plasticity. Front Cell Neurosci 2019; 13: 135. [DOI:10.3389/fncel.2019.00135]
49. Vukovic J, Colditz MJ, Blackmore DG, Ruitenberg MJ, Bartlett PF. Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci 2012; 32: 6435-6443. [DOI:10.1523/JNEUROSCI.5925-11.2012]
50. Walker KA, Ficek BN, Westbrook R. Understanding the Role of Systemic Inflammation in Alzheimer's Disease. ACS Chem Neurosci 2019; 10 : 3340-3342. [DOI:10.1021/acschemneuro.9b00333]
51. Walker KA, Gottesman RF, Wu A, Knopman DS, Gross AL, Mosley TH, Selvin E, Windham BG. Systemic inflammation during midlife and cognitive change over 20 years: The ARIC Study. Neurology 2019; 92: 1256-1267.
52. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann Transl Med 2015; 3:136.
53. Xu Y, Lin MT, Zha X. 2020. GPR68 deletion impairs hippocampal long-term potentiation and passive avoidance behavior. Mol Brain 2020; 13:1-5. [DOI:10.1186/s13041-020-00672- 8]
54. You JC, Muralidharan K, Fu C-H, Park J, Tosi U, Zhang X, Chin J. Distinct patterns of dentate gyrus cell activation distinguish physiologic from aberrant stimuli. PLoS One 2020; 15: 0232241. [DOI:10.1371/journal.pone.0232241]
55. Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer's disease brain: A review. Front Aging Neurosci 2018; 10: 42. [DOI:10.3389/fnagi.2018.00042]
56. Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, Narvaez A, Honrada R, Ruvalcaba D, McGrath MS. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 2009; 206: 121-124. [DOI:10.1016/j.jneuroim.2008.09.017]
57. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Lu D, Wei W, Wang Y, Li H, Fu Y, Zhu L. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 2019; 9:1-12. [DOI:10.1038/s41598-019-42286-8]
58. Ziv Y, Schwartz M. Immune-based regulation of adult neurogenesis: Implications for learning and memory. Brain Behav Immun 2008; 22: 167-176. [DOI:10.1016/j.bbi.2007.08.006]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.