Accepted Manuscripts                   Back to the articles list | Back to browse issues page


XML Print


Abstract:   (504 Views)
Background: Neural stem cells (NSCs) are multipotent stem cells residing in the central nervous system that are capable of self-renewal to support ongoing requirements for neurogenesis in the adult brain. Since they are considered potential candidate cells for neuro-regenerative medicine, applying safe induction methods for them is very important. Synthetic modified-mRNA (mmRNA) as an alternative to traditional DNA- or protein-based methods, is regarded as a powerful tool for inducing short-term gene expression in cells with no genetic manipulation.
Methods: Here, we aimed to develop an optimized condition for mmRNA transfection in primary NSCs. In vitro-transcribed EGFP mmRNA (mmRNAEGFP) was delivered to human embryonic kidney cells (HEK293T) and mouse NSCs by using two commercial agents, Lipofectamine-2000 (LF2000) and TransIT. Also, a plasmid DNA was used to transfect cells considered EGFP-expressing positive control. In addition, the poly(A) tail (poly adenosine tail) elongation and chloroquine (CQ) treatment were performed to improve transfection efficiency. Finally, flow cytometry, fluorescence microscopy and MTT assays were performed to assess the cells.
Results: In comparison with HEK293T, NSCs were very sensitive to transfection, the efficacy of transfection using DNA/LF2000 was higher in HEK293T cells, but mmRNAEGFP/TransIT showed better transfection efficacy in NSCs. Poly(A) tail elongation; also, treating the cells with CQ prior to transfection significantly improved its efficacy.
Conclusions: The mmRNA poly(A) tail elongation, and the use of specific transfection agents in combination with TLR inhibitors can lead to a more effective transfection in NSCs.
     

References
1. Avci-Adali M, Behring A, Keller T, Krajewski S, Schlensak C, Wendel H P. Optimized conditions for successful transfection of human endothelial cells with in vitro synthesized and modified mRNA for induction of protein expression. Journal of Biological Engineering 2014; 8: 8. [DOI:10.1186/1754-1611-8-8]
2. Badieyan Z S, Evans T. Concise review: application of chemically modified mRNA in cell fate conversion and tissue engineering. Stem cells translational medicine 2019; 8: 833-843. [DOI:10.1002/sctm.18-0259]
3. Bell G D, Yang Y, Leung E, Krissansen G W. mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PloS one 2018; 13: e0201464. [DOI:10.1371/journal.pone.0201464]
4. Bettinger T, Carlisle R C, Read M L, Ogris M, Seymour L W. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic acids research 2001; 29: 3882-3891. [DOI:10.1093/nar/29.18.3882]
5. Chang M-F, Hsieh J-H, Chiang H, Kan H-W, Huang C-M, Chellis L, et al. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Scientific Reports 2016; 6: 35612. [DOI:10.1038/srep35612]
6. Connor B, Firmin E, McCaughey-Chapman A, Monk R, Lee K, Liot S, et al. Conversion of adult human fibroblasts into neural precursor cells using chemically modified mRNA. Heliyon 2018; 4: e00918. [DOI:10.1016/j.heliyon.2018.e00918]
7. Durymanov M, Reineke J. Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers. Frontiers in pharmacology 2018; 9: 971. [DOI:10.3389/fphar.2018.00971]
8. Erbacher P, Roche A C, Monsigny M, Midoux P. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Experimental cell research 1996; 225: 186-194. [DOI:10.1006/excr.1996.0169]
9. Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís M Á, Del Pozo-Rodríguez A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials (Basel, Switzerland) 2020; 10: 364. [DOI:10.3390/nano10020364]
10. Hasan M T, Subbaroyan R, Chang T Y. High-efficiency stable gene transfection using chloroquine-treated Chinese hamster ovary cells. Somatic cell and molecular genetics 1991; 17: 513-517. [DOI:10.1007/BF01233175]
11. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006; 108: 4009-4017. [DOI:10.1182/blood-2006-04-015024]
12. Homayouni F M, Sadeghi-Zadeh M, Alizadeh-Shoorjestan B, Dehghani-Varnamkhasti R, Narimani S, Darabi L, et al. Isolation and Culture of Embryonic Mouse Neural Stem Cells. Journal of visualized experiments: 2018 Nov 11;(141). [DOI:10.3791/58874]
13. Joo K M, Jin J, Kang B G, Lee S J, Kim K H, Yang H, et al. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PloS one 2012; 7: e25936. [DOI:10.1371/journal.pone.0025936]
14. Joshi C R, Labhasetwar V, Ghorpade A. Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12: 51-83. [DOI:10.1007/s11481-016-9724-3]
15. Kauffman K J, Mir F F, Jhunjhunwala S, Kaczmarek J C, Hurtado J E, Yang J H, et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 2016; 109: 78-87. [DOI:10.1016/j.biomaterials.2016.09.006]
16. Keravala A, Ormerod B K, Palmer T D, Calos M P. Long-term transgene expression in mouse neural progenitor cells modified with phiC31 integrase. Journal of neuroscience methods 2008; 173: 299-305. [DOI:10.1016/j.jneumeth.2008.06.005]
17. Kužnik A, Benčina M, Švajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. The Journal of Immunology 2011; 186: 4794-4804. [DOI:10.4049/jimmunol.1000702]
18. Lakshmipathy U, Pelacho B, Sudo K, Linehan J L, Coucouvanis E, Kaufman D S, et al. Efficient transfection of embryonic and adult stem cells. Stem Cells 2004; 22: 531-43. [DOI:10.1634/stemcells.22-4-531]
19. Liang W, Lam J K. Endosomal escape pathways for non-viral nucleic acid delivery systems. Molecular regulation of endocytosis 2012: 429-456. [DOI:10.5772/46006]
20. López-Lastra M, Rivas A, Barría M I. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biological research 2005; 38: 121-146. [DOI:10.4067/S0716-97602005000200003]
21. Mandal P K, Rossi D J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nature protocols 2013; 8: 568-582. [DOI:10.1038/nprot.2013.019]
22. McLenachan S, Zhang D, Palomo A B A, Edel M J, Chen F K. mRNA transfection of mouse and human neural stem cell cultures. PLoS One 2013; 8: e83596. [DOI:10.1371/journal.pone.0083596]
23. Michel Y M, Poncet D, Piron M, Kean K M, Borman A M. Cap-poly (A) synergy in mammalian cell-free extracts investigation of the requirements for poly (a)-mediated stimulation of translation initiation. Journal of Biological Chemistry 2000; 275: 32268-32276. [DOI:10.1074/jbc.M004304200]
24. Mockey M, Gonçalves C, Dupuy F P, Lemoine F M, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly (A) chains in cis and in trans for a high protein expression level. Biochemical and biophysical research communications 2006; 340: 1062-1068. [DOI:10.1016/j.bbrc.2005.12.105]
25. Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Frontiers in neurology 2020; 11: 148. [DOI:10.3389/fneur.2020.00148]
26. Patel S, Athirasala A, Menezes P P, Ashwanikumar N, Zou T, Sahay G, et al. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue engineering. Part A 2019; 25: 91-112. [DOI:10.1089/ten.tea.2017.0444]
27. PENG J, SCHOENBERG D R. mRNA with a< 20-nt poly (A) tail imparted by the poly (A)-limiting element is translated as efficiently in vivo as long poly (A) mRNA. RNA 2005; 11: 1131-1140. [DOI:10.1261/rna.2470905]
28. Pickard M R, Adams C F, Chari D M. Magnetic Nanoparticle-Mediated Gene Delivery to Two- and Three-Dimensional Neural Stem Cell Cultures: Magnet-Assisted Transfection and Multifection Approaches to Enhance Outcomes. Curr Protoc Stem Cell Biol 2017; 40: 2d.19.1-2d.19.16. [DOI:10.1002/cpsc.23]
29. Preiss T. The end in sight: poly (A), translation and mRNA stability in eukaryotes. Translation Mechanisms 2002: 197-212.
30. Rietze R L, Reynolds B A. Neural stem cell isolation and characterization. Methods in enzymology. Vol 419: Elsevier, 2006: 3-23. [DOI:10.1016/S0076-6879(06)19001-1]
31. Rohani L, Fabian C, Holland H, Naaldijk Y, Dressel R, Löffler-Wirth H, et al. Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem cell research 2016; 16: 662-672. [DOI:10.1016/j.scr.2016.03.008]
32. Shih C-c, DiGiusto D, Mamelak A, LeBon T, Forman S J. Hematopoietic potential of neural stem cells: plasticity versus heterogeneity. Leukemia & lymphoma 2002; 43: 2263-2268. [DOI:10.1080/1042819021000040215]
33. Wang Y, Su H-h, Yang Y, Hu Y, Zhang L, Blancafort P, et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Molecular Therapy 2013; 21: 358-367. [DOI:10.1038/mt.2012.250]
34. Warren L, Lin C. mRNA-based genetic reprogramming. Molecular Therapy 2019; 27: 729-734. [DOI:10.1016/j.ymthe.2018.12.009]
35. Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochemical and biophysical research communications 2010; 394: 189-193. [DOI:10.1016/j.bbrc.2010.02.150]
36. Zhang B, Mallapragada S. The mechanism of selective transfection mediated by pentablock copolymers; Part II: Nuclear entry and endosomal escape. Acta Biomaterialia 2011; 7: 1580-1587. [DOI:10.1016/j.actbio.2010.11.033]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.