Volume 28, Issue 1 (March 2024)                   Physiol Pharmacol 2024, 28(1): 27-35 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sathiyaseelan M, Palve S, Vengadapathy K, Nithiya D R, Berlin Raj J. Association of serum adenosine deaminase level with nerve conduction velocity in type II diabetes patients. Physiol Pharmacol 2024; 28 (1) : 5
URL: http://ppj.phypha.ir/article-1-2116-en.html
Abstract:   (602 Views)
Introduction: Adenosine plays an important role in increasing glucose uptake into muscles. Adenosine deaminase (ADA) enzymes convert adenosine into inosine and 2′-deoxyinosine. Increased ADA activity leads to the reduction of adenosine, subsequently lowering glucose absorption in skeletal muscles. Uncontrolled diabetes tends to result in complications such as diabetic neuropathy.To investigate the association between serum ADA levels and lower limb nerve conduction velocity in individuals with type II diabetes mellitus.
Methods: This study included 60 participants, with 30 patients in the diabetes group and the remaining 30 in the control group. Serum ADA levels were measured, and nerve conduction recordings were performed on the lower limb’s motor peroneal, tibial, and sensory sural nerves. 
Results: In diabetes patients, lower limb sensory sural nerves, motor tibial, and peroneal nerves showed increased latency, reduced amplitude, and decreased nerve conduction velocity compared to the control group. ADA levels were found to be higher in diabetic patients than in the control group. A negative correlation was observed between sensory sural nerve conduction velocity and ADA levels, with females exhibiting more negative correlations than males. No association was found between motor peroneal and motor tibial nerve conduction parameters and ADA levels.
Conclusion: Sensory nerves are affected much earlier than motor nerves under hyperglycemic conditions. Elevated ADA levels indicate reduced insulin sensitivity, and the depletion of adenosine contributes to nerve damage. ADA levels could be useful in diagnosing early peripheral nerve damage.
Article number: 5
Full-Text [PDF 934 kb]   (87 Downloads)    

1. AANEM. Proper performance and interpretation of electrodiagnostic studies. Muscle Nerve. 2015; 51:468-71. [DOI:10.1002/mus.24587]
2. Arora M, Neeraj N, Arora R. A study on the utility of nerve conduction studies in the diagnosis of subclinical diabetic peripheral neuropathy. International journal of contemporary medical research. 2018;5: K1-K4. [DOI:10.21276/ijcmr.2018.5.11.29]
3. Bansal V, Kalita J, Misra U K. Diabetic neuropathy. Postgrad Med J. 2006;82:95-100. [DOI:10.1136/pgmj.2005.036137]
4. Callaghan B C, Cheng H T, Stables C L, Smith A L, Feldman E L. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012; 11:521-3(1)4. [DOI:10.1016/S1474-4422(12)70065-0]
5. Clayton W, Elasy T A. A Review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients. Clin Diabetes. 2009; 27:52-8. [DOI:10.2337/diaclin.27.2.52]
6. Haskó G, Cronstein B N. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 2004; 25:33-9. [DOI:10.1016/j.it.2003.11.003]
7. International Diabetes Federation. IDF Diabetes Atlas,10 thedn. Brussels, Belgium:2021.Available at: https://www.diabetesatlas.org
8. Khemka V K, Bagchi D, Ghosh A, Sen O, Bir A, Chakrabarti S, et al. Raised serum adenosine deaminase level in nonobese type 2 diabetes mellitus. Scientific World Journal. 2013;2013:404320. [DOI:10.1155/2013/404320]
9. Kimura J, Yamada T, Stevland N P. Distal slowing of motor nerve conduction velocity in diabetic polyneuropathy. J Neurol Sci. 1979; 42:291-302. [DOI:10.1016/0022-510X(79)90061-3]
10. Krarup C. Nerve conduction studies in selected peripheral nerve disorders. Curr Opin Neurol. 2002; 15:579-93. [DOI:10.1097/00019052-200210000-00009]
11. Kundu D, Sen S, Paul A, Chatterjee A, Sarkar P, Chakrabarti I. Diagnostic value of serum aden osine deaminase in Type 2 diabetic patients. Int J Med Res Rev. 2019;7:1-7. [DOI:10.17511/ijmrr.2019.i01.01]
12. Meerwaldt R, Links T P, Graaff R, Hoogenberg K, Lefrandt J D, Baynes J W, et al. Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical manifestation of diabetic neuropathy. Diabetologia. 2005; 48:1637-44. [DOI:10.1007/s00125-005-1828-x]
13. National Institute of Diabetes and Digestive and Kidney Diseases [Internet]. [cited 2024 Feb 8]. Diabetic Neuropathy - NIDDK. Available from: https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/nerve-damage-diabetic-neuropathies
14. Niraula A, Thapa S, Kunwar S, Lamsal M, Baral N, Maskey R. Adenosine deaminase activity in type 2 diabetes mellitus: does it have any role? BMC Endocr Disord. 2018; 1:58. [DOI:10.1186/s12902-018-0284-9]
15. Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. Indian J Ophthalmol. 2021; 69:2932-38. [DOI:10.4103/ijo.IJO_1627_21]
16. Prasad Neelambala, Diwanji S A, Pisharody Indu K, Raghav Pankaja R, Karandikar M S. Comparative analysis of electrophysiological parameters of median nerve in normal and diabetic subjects. Indian Medical Gazette. 2013; 147: 261-64.
17. Ribeiro J A, Lobo M G, Sebastião A M. Endogenous adenosine modulation of 22Na uptake by rat brain synaptosomes. Neurochem Res. 2003; 28:1591-5. [DOI:10.1023/A:1025638929136]
18. Sapkota L B, Thapa S, Subedi N. Correlation study of adenosine deaminase and its isoenzymes in type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2017;5:e000357. [DOI:10.1136/bmjdrc-2016-000357]
19. Mishra U K and Kalita J. Clinical Neurophysiology.2nd Ed. B.I.Churchill Livingstone Pvt Ltd.NewDelhi.1999 41-43.
20. Vergauwen L, Hespel P, Richter E A. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. J Clin Invest. 1994; 93:974-81. [DOI:10.1172/JCI117104]
21. Vinapamula K S, Pemmaraju S V, Bhattaram S K, Bitla A R, Manohar S M. Serum adenosine deaminase as inflammatory marker in rheumatoid arthritis. J Clin Diagn Res. 2015;9:BC08-10. [DOI:10.7860/JCDR/2015/14296.6483]
22. Yadav N, Shete A, Yadav P, Yadav N, Khan S T. Study of nerve conduction velocity in type ii diabetes mellitus. Natl J Integr Res Med 2015;6:36-43

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.