Volume 28, Issue 2 (July 2024)                   Physiol Pharmacol 2024, 28(2): 141-156 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salem H R, S. Hanna G, H. Hassan M, El-kotb S, Rashad S, Yassien R I, et al . Combined metformin and insulin therapy improves neurocognitive dysfunction in type 2 diabetic rat model via anti-inflammatory and antioxidant mechanisms. Physiol Pharmacol 2024; 28 (2) : 5
URL: http://ppj.phypha.ir/article-1-2229-en.html
Abstract:   (439 Views)

Introduction: Improper glycemic control is associated with diabetic cognitive dysfunction. Several studies have confirmed the neuroprotective effects of metformin and insulin. This study aimed to investigate the effects of metformin and/or insulin therapy on neurocognitive functions in a type 2 diabetes mellitus (T2DM) rat model.
Methods: Fifty adult male Wistar rats were used in this study and had free access to water and a normal chow diet. After an acclimatization period, 10 rats were kept on a normal chow diet and considered as the control group. T2DM was induced in the other 40 rats by a high-fat diet and low-dose streptozotocin method. Then, diabetic rats were randomly allocated into 4 equal groups: Non-treated diabetic group; Metformin-treated diabetic group (treated with metformin 250 mg/kg/day for 6 weeks); Insulin-treated diabetic group (treated with NPH insulin 40 U/kg for 6 weeks); and Metformin and insulin-treated diabetic group. Neurocognitive functions were assessed by footprint assay, Y-maze, open field test, and Morris water maze. Glycaemic profile, serum levels of amyloid A, interleukin-18, and nuclear factor-kappa B were analyzed. Brain malondialdehyde and total antioxidant capacity were measured. A histopathological examination of the frontal lobe was performed.
Results: Treatment with metformin and/or insulin significantly improved the impaired neurocognitive dysfunction, brain oxidative stress, changes in biochemical parameters, and the associated histopathological changes in the frontal cortex of diabetic rats. The combined therapy showed a better effect than either monotherapy alone.
Conclusion: Metformin and insulin therapy may be valuable for the prevention of neurocognitive dysfunction in T2DM.

Article number: 5
Full-Text [PDF 1550 kb]   (14 Downloads)    

1. Alzamily A A, Obaid K M, Al-Azzawi B. Metformin may ameliorate inflammatory events of IL-18 in some inflammatory conditions. Immunity 2021; 3: 4. [DOI:10.31482/mmsl.2021.039]
2. Bădescu S, Tătaru C, Kobylinska L, Georgescu E, Zahiu D, Zăgrean A, et al. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats. Journal of medicine and life 2016; 9: 275.
3. Baker C, Retzik-Stahr C, Singh V, Plomondon R, Anderson V, Rasouli N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Therapeutic Advances in Endocrinology and Metabolism 2021; 12: 2042018820980225. [DOI:10.1177/2042018820980225]
4. Baptista M G, Ferreira C G, Albuquerque Y M, D’assunção C G, Alves R C, Wanderley-Teixeira V, et al. Histomorphometric and immunohistochemical evaluation of the frontal cerebral cortex in diabetic rats after treatment with melatonin. Pesquisa Veterinária Brasileira 2021; 40: 1077-1087. [DOI:10.1590/1678-5150-pvb-6421]
5. Biessels G J, Whitmer R A. Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia 2020; 63: 3-9. [DOI:10.1007/s00125-019-04977-9]
6. Bossu P, Ciaramella A, Salani F, Bizzoni F, Varsi E, Di Iulio F, et al. Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment. Brain, Behavior, and Immunity 2008; 22: 487-492. [DOI:10.1016/j.bbi.2007.10.001]
7. Bracchi-Ricard V, Brambilla R, Levenson J, Hu W H, Bramwell A, Sweatt J D, et al. Astroglial nuclear factor-κB regulates learning and memory and synaptic plasticity in female mice. Journal of Neurochemistry 2008; 104: 611-623. [DOI:10.1111/j.1471-4159.2007.04993.x]
8. Brooks S P, Trueman R C, Dunnett S B. Assessment of motor coordination and balance in mice using the rotarod, elevated bridge, and footprint tests. Current Protocols in Mouse Biology 2012; 2: 37-53. [DOI:10.1002/9780470942390.mo110165]
9. Chao P-C, Li Y, Chang C-H, Shieh J P, Cheng J-T, Cheng K-C. Investigation of insulin resistance in the popularly used four rat models of type-2 diabetes. Biomedicine & Pharmacotherapy 2018; 101: 155-161. [DOI:10.1016/j.biopha.2018.02.084]
10. Chavoshinezhad S, Kouchesfahani H M, Ahmadiani A, Dargahi L. Interferon beta ameliorates cognitive dysfunction in a rat model of Alzheimer’s disease: Modulation of hippocampal neurogenesis and apoptosis as underlying mechanism. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019; 94: 109661. [DOI:10.1016/j.pnpbp.2019.109661]
11. Chen H, Sullivan G, Yue L Q, Katz A, Quon M J. QUICKI is a useful index of insulin sensitivity in subjects with hypertension. American Journal of Physiology-Endocrinology and Metabolism 2003; 284: E804-E812. [DOI:10.1152/ajpendo.00330.2002]
12. Chen Q, Xie D, Yao Q, Yang L. Effect of metformin on locomotor function recovery in rat spinal cord injury model: a meta-analysis. Oxidative Medicine and Cellular Longevity 2021; 2021. [DOI:10.1155/2021/1948003]
13. Correia S, Carvalho C, Santos M S, Proença T, Nunes E, Duarte A I, et al. Metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. Med Chem 2008; 4: 358-64. [DOI:10.2174/157340608784872299]
14. Cui Y, Tang T Y, Lu C Q, Ju S. Insulin resistance and cognitive impairment: evidence from neuroimaging. Journal of Magnetic Resonance Imaging 2022; 56: 1621-1649. [DOI:10.1002/jmri.28358]
15. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, et al. Insulin inhibits intranuclear nuclear factor κB and stimulates IκB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? The Journal of Clinical Endocrinology & Metabolism 2001; 86: 3257-3265. [DOI:10.1210/jcem.86.7.7623]
16. Dong X, Kong L, Huang L, Su Y, Li X, Yang L, et al. Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice. Journal of Ginseng Research 2023; 47: 458-468. [DOI:10.1016/j.jgr.2022.12.006]
17. Ertas B, Hazar-Yavuz A N, Topal F, Keles-Kaya R, Karakus Ö, Ozcan G S, et al. Rosa canina L. improves learning and memory-associated cognitive impairment by regulating glucose levels and reducing hippocampal insulin resistance in high-fat diet/streptozotocin-induced diabetic rats. Journal of Ethnopharmacology 2023: 116541. [DOI:10.1016/j.jep.2023.116541]
18. Evans M C, Rizwan M Z, Anderson G M. Insulin action on GABA neurons is a critical regulator of energy balance but not fertility in mice. Endocrinology 2014; 155: 4368-4379. [DOI:10.1210/en.2014-1412]
19. Fischer C P, Perstrup L B, Berntsen A, Eskildsen P, Pedersen B K. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clinical Immunology 2005; 117: 152-160. [DOI:10.1016/j.clim.2005.07.008]
20. Furman B L. Streptozotocin-induced diabetic models in mice and rats. Current protocols in pharmacology 2015; 70: 5.47. 1-5.47. 20. [DOI:10.1002/0471141755.ph0547s70]
21. Ghasemi A, Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. EXCLI journal 2023; 22: 274.
22. Gould T D, Dao D, Kovacsics C. Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Vol 2: Springer, 2009. [DOI:10.1007/978-1-60761-303-9]
23. Grover B, Auberger C, Sarangarajan R, Cacini W. Functional impairment of renal organic cation transport in experimental diabetes. Pharmacology & Toxicology 2002; 90: 181-186. [DOI:10.1034/j.1600-0773.2002.900402.x]
24. Gupta M, Pandey S, Rumman M, Singh B, Mahdi A A. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neuroscience Reports 2023; 14: 57-63. [DOI:10.1016/j.ibneur.2022.12.006]
25. Henderson A D, Johnson A W, Ridge S T, Egbert J S, Curtis K P, Berry L J, et al. Diabetic gait is not just slow gait: gait compensations in diabetic neuropathy. Journal of Diabetes Research 2019; 2019. [DOI:10.1155/2019/4512501]
26. Herman R, Kravos N A, Jensterle M, Janež A, Dolžan V. Metformin and insulin resistance: a review of the underlying mechanisms behind changes in GLUT4-mediated glucose transport. International Journal of Molecular Sciences 2022; 23: 1264. [DOI:10.3390/ijms23031264]
27. Hurlock E C, Bose M, Pierce G, Joho R H. Rescue of motor coordination by Purkinje cell-targeted restoration of Kv3. 3 channels in Kcnc3-null mice requires Kcnc1. Journal of Neuroscience 2009; 29: 15735-15744. [DOI:10.1523/JNEUROSCI.4048-09.2009]
28. Jang S, Jang W Y, Choi M, Lee J, Kwon W, Yi J, et al. Serum amyloid A1 is involved in amyloid plaque aggregation and memory decline in amyloid beta abundant condition. Transgenic Research 2019; 28: 499-508. [DOI:10.1007/s11248-019-00166-x]
29. Janthakhin Y, Kingtong S, Aphibanthammakit C, Juntapremjit S. Metformin mitigates memory impairment of diabetic mice through modulation of plasma pro-inflammatory cytokines and Aβ1-42 levels. Chiang Mai University Journal of Natural Sciences 2023; 22: e2023001. [DOI:10.12982/NLSC.2023.001]
30. Karvani M, Simos P, Stavrakaki S, Kapoukranidou D. Neurocognitive impairment in type 2 diabetes mellitus. Hormones 2019; 18: 523-534. [DOI:10.1007/s42000-019-00128-2]
31. Ke Y, Bu S, Ma H, Gao L, Cai Y, Zhang Y, et al. Preventive and therapeutic effects of astaxanthin on depressive-like behaviors in high-fat diet and streptozotocin-treated rats. Frontiers in Pharmacology 2020; 10: 1621. [DOI:10.3389/fphar.2019.01621]
32. Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. The Lancet Neurology 2020; 19: 758-766. [DOI:10.1016/S1474-4422(20)30231-3]
33. Kermer P, Liman J, Weishaupt J H, Bähr M. Neuronal apoptosis in neurodegenerative diseases: from basic research to clinical application. Neurodegenerative Diseases 2004; 1: 9-19. [DOI:10.1159/000076665]
34. Koekkoek P S, Kappelle L J, van den Berg E, Rutten G E, Biessels G J. Cognitive function in patients with diabetes mellitus: guidance for daily care. The Lancet Neurology 2015; 14: 329-340. [DOI:10.1016/S1474-4422(14)70249-2]
35. Kremer M, Becker L J, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? European Journal of Neuroscience 2021; 53: 236-270. [DOI:10.1111/ejn.14686]
36. Kumar Datusalia A, Sunder Sharma S. NF-κB inhibition resolves cognitive deficits in experimental type 2 diabetes mellitus through CREB and glutamate/GABA neurotransmitters pathway. Current Neurovascular Research 2016; 13: 22-32. [DOI:10.2174/1567202612666151030104810]
37. Łabuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopień B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacological Reports 2010; 62: 956-965. [DOI:10.1016/S1734-1140(10)70357-1]
38. Leo A, Citraro R, Tallarico M, Iannone M, Fedosova E, Nesci V, et al. Cognitive impairment in the WAG/Rij rat absence model is secondary to absence seizures and depressive-like behavior. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019; 94: 109652. [DOI:10.1016/j.pnpbp.2019.109652]
39. Lin Y, Gong Z, Ma C, Wang Z, Wang K. Relationship between glycemic control and cognitive impairment: A systematic review and meta-analysis. Frontiers in Aging Neuroscience 2023; 15. [DOI:10.3389/fnagi.2023.1126183]
40. Liu S, Zheng M, Li Y, He L, Chen T. The protective effect of Geniposide on diabetic cognitive impairment through BTK/TLR4/NF-κB pathway. Psychopharmacology 2020; 237: 465-477. [DOI:10.1007/s00213-019-05379-w]
41. Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, et al. Type 2 diabetes mellitus-associated cognitive dysfunction: advances in potential mechanisms and therapies. Neuroscience & Biobehavioral Reviews 2022: 104642. [DOI:10.1016/j.neubiorev.2022.104642]
42. Madhu L N, Kodali M, Shetty A K. Promise of metformin for preventing age-related cognitive dysfunction. Neural Regeneration Research 2022; 17: 503. [DOI:10.4103/1673-5374.320971]
43. Magliano D J, Chen L, Islam R M, Carstensen B, Gregg E W, Pavkov M E, et al. Trends in the incidence of diagnosed diabetes: a multicountry analysis of aggregate data from 22 million diagnoses in high-income and middle-income settings. The lancet Diabetes & endocrinology 2021; 9: 203-211. [DOI:10.1016/S2213-8587(20)30402-2]
44. Martínez-Tellez R, de Jesús Gómez-Villalobos M, Flores G. Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Research 2005; 1048: 108-115. [DOI:10.1016/j.brainres.2005.04.048]
45. Matthews D R, Hosker J P, Rudenski A S, Naylor B, Treacher D F, Turner R C. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-419. [DOI:10.1007/BF00280883]
46. Mehta B K, Nerkar D, Banerjee S. Characterization of peripheral neuropathy in rat model of type 2 diabetes. Indian Journal of Pharmaceutical Education and Research 2017; 51: 92-101. [DOI:10.5530/ijper.51.1.13]
47. Muriach M, Flores-Bellver M, Romero F J, Barcia J M. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxidative medicine and cellular longevity 2014; 2014. [DOI:10.1155/2014/102158]
48. Neurath M, Becker C, Barbulescu K. Role of NF-κB in immune and inflammatory responses in the gut. Gut 1998; 43: 856-860. [DOI:10.1136/gut.43.6.856]
49. Nijboer C H, Heijnen C J, Groenendaal F, Van Bel F, Kavelaars A. Alternate pathways preserve tumor necrosis factor-α production after nuclear factor-κB inhibition in neonatal cerebral hypoxia-ischemia. Stroke 2009; 40: 3362-3368. [DOI:10.1161/STROKEAHA.109.560250]
50. Ola M S, Aleisa A M, Al-Rejaie S S, Abuohashish H M, Parmar M Y, Alhomida A S, et al. Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurological sciences 2014; 35: 1003-1008. [DOI:10.1007/s10072-014-1628-5]
51. Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. Journal of Diabetes Research 2020; 2020. [DOI:10.1155/2020/7489795]
52. Paylor R, Spencer C M, Yuva-Paylor L A, Pieke-Dahl S. The use of behavioral test batteries, II: effect of test interval. Physiology & Behavior 2006; 87: 95-102. [DOI:10.1016/j.physbeh.2005.09.002]
53. Piatkowska-Chmiel I, Herbet M, Gawronska-Grzywacz M, Ostrowska-Lesko M, Dudka J. The role of molecular and inflammatory indicators in the assessment of cognitive dysfunction in a mouse model of diabetes. International Journal of Molecular Sciences 2021; 22: 3878. [DOI:10.3390/ijms22083878]
54. Qian C, Zhu C, Yu W, Jiang X, Zhang F. High-fat diet/low-dose streptozotocin-induced type 2 diabetes in rats impacts osteogenesis and Wnt signaling in bone marrow stromal cells. PLoS One 2015; 10: e0136390. [DOI:10.1371/journal.pone.0136390]
55. Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Molecular and Cellular Endocrinology 2020; 500: 110628. [DOI:10.1016/j.mce.2019.110628]
56. Rosyadi I, Wahono A T U, Ramadhona E, Hijrati Y N. Acute phase protein serum amyloid a (SAA) profile in diabetic Wistar rats induced streptozotocin. AIP Conference Proceedings 2019; 2099: 020019. [DOI:10.1063/1.5098424]
57. Sanna R S, Muthangi S, B.K C S, Devi S A. Grape seed proanthocyanidin extract and insulin prevents cognitive decline in type 1 diabetic rat by impacting Bcl-2 and Bax in the prefrontal cortex. Metabolic Brain Disease 2019; 34: 103-117. [DOI:10.1007/s11011-018-0320-5]
58. Scarabino D, Peconi M, Broggio E, Gambina G, Maggi E, Armeli F, et al. Relationship between proinflammatory cytokines (Il-1beta, Il-18) and leukocyte telomere length in mild cognitive impairment and Alzheimer’s disease. Experimental Gerontology 2020; 136: 110945. [DOI:10.1016/j.exger.2020.110945]
59. Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation 2014; 5: 349-358. [DOI:10.1111/jdi.12235]
60. Song Y, Ding W, Bei Y, Xiao Y, Tong H-D, Wang L-B, et al. Insulin is a potential antioxidant for diabetes-associated cognitive decline via regulating Nrf2 dependent antioxidant enzymes. Biomedicine & Pharmacotherapy 2018; 104: 474-484. [DOI:10.1016/j.biopha.2018.04.097]
61. Srinivasan K, Viswanad B, Asrat L, Kaul C, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacological Research 2005; 52: 313-320. [DOI:10.1016/j.phrs.2005.05.004]
62. Stuss D T, Knight R T. Principles of frontal lobe function: Oxford University Press, 2013. [DOI:10.1093/med/9780199837755.001.0001]
63. Suryavanshi S V, Kulkarni Y A. NF-κβ: a potential target in the management of vascular complications of diabetes. Frontiers in Pharmacology 2017; 8: 798. [DOI:10.3389/fphar.2017.00798]
64. Suvarna K S, Layton C, Bancroft J D. Bancroft’s theory and practice of histological techniques E-Book: Elsevier Health Sciences, 2018.
65. Wang F, Guan M, Wei L, Yan H. IL‑18 promotes the secretion of matrix metalloproteinases in human periodontal ligament fibroblasts by activating NF‑κB signaling. Molecular Medicine Reports 2019; 19: 703-710. [DOI:10.3892/mmr.2018.9697]
66. Wickramasinghe A S D, Attanayake A P, Kalansuriya P. Biochemical characterization of high fat diet fed and low dose streptozotocin induced diabetic Wistar rat model. Journal of Pharmacological and Toxicological Methods 2022; 113: 107144. [DOI:10.1016/j.vascn.2021.107144]
67. Wium-Andersen I, Rungby J, Jørgensen M, Sandbæk A, Osler M, Wium-Andersen M. Risk of dementia and cognitive dysfunction in individuals with diabetes or elevated blood glucose. Epidemiology and Psychiatric Sciences 2020; 29: e43. [DOI:10.1017/S2045796019000374]
68. Zhang W, Zhao L, Zhang J, Li P, Lv Z. Metformin improves cognitive impairment in diabetic mice induced by a combination of streptozotocin and isoflurane anesthesia. Bioengineered 2021; 12: 10982-10993. [DOI:10.1080/21655979.2021.2004978]
69. Zhao W Q, Chen H, Quon M J, Alkon D L. Insulin and the insulin receptor in experimental models of learning and memory. European Journal of Pharmacology 2004; 490: 71-81. [DOI:10.1016/j.ejphar.2004.02.045]
70. Zheng B, Su B, Price G, Tzoulaki I, Ahmadi-Abhari S, Middleton L. Glycemic control, diabetic complications, and risk of dementia in patients with diabetes: results from a large UK cohort study. Diabetes Care 2021; 44: 1556-1563. [DOI:10.2337/dc20-2850]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.