Volume 28, Issue 4 (December 2024)                   Physiol Pharmacol 2024, 28(4): 409-418 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amani-Ekhtesar N, yaghmaei P, ebrahim habibi A, karkhaneh L. Effect of Thioflavin-T on Adipokine Hormones and Fatty Liver in obese male NMRI mice fed a high-fat diet. Physiol Pharmacol 2024; 28 (4) : 4
URL: http://ppj.phypha.ir/article-1-2311-en.html
Abstract:   (486 Views)

Introduction: The objective of the study was to find out the influence of Thioflavin-T (ThT) on obesity and fatty liver by investigating the adipokine hormones, and insulin serum level of male NMRI mice which were exposed to a high-fat diet (HFD).
Methods: 50 adult male NMRI mice were separated into five groups: n=10. The control group was given a standard diet at twelve-week intervals. The sham group was nourished with HFD that lasted for 8 weeks, afterwards, the group received a standard diet and solvent water (0.5ml) by gavage (4 weeks). The experimental groups 1-3 were nourished with HFD (4% cholesterol, 60% fat) eight-week period. Then, the treatment period started in experimental groups by receiving a normal diet in addition to ThT with three doses (5,10 and 15 mg/kg, 0.5ml), via gavage (4 weeks). 
Results: HFD contributed to a substantial reduction in serum adiponectin levels and increased leptin serum in the sham group opposite to the control group (P< 0.001). However, the concentration of both adipokine hormones was significantly modified under the treatment of ThT in a dose-dependent manner. Insulin serum increased in the sham group significantly (P< 0.001), meanwhile, a significant decrease was shown in experimental groups 2, and 3 than in the sham group (P<0.01). ThT also reduced HOMA-IR in experimental groups. The introduction of ThT in varying doses led to the induction of polymorphonuclear cells in the liver tissue.
Conclusion: Our findings propose that ThT can affect liver function and body weight by modulating the serum levels of adipokine hormones besides decreasing the level of insulin and HOMA-IR in mice fed with HFD.

Article number: 4
Full-Text [PDF 591 kb]   (26 Downloads)    

References
1. Adolph T E, Grander C, Grabherr F, et al. Adipokines and non-alcoholic fatty liver disease: multiple interactions. Int J Mol Sci 2017; 29;18(8): 1649. [DOI:10.3390/ijms18081649]
2. Ale-Ebrahim M, Rahmani R, Faryabi K, et al. Atheroprotective and hepatoprotective effects of trans-chalcone through modification of eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-II, and PDGF mRNA expression in NMRI mice fed HCD. Mol Biol Rep 2022; 49(5):3433-3443. [DOI:10.1007/s11033-022-07174-x]
3. Araújo A R, Rosso N, Bedogni G, et al. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int 2018; 38:47-51. [DOI:10.1111/liv.13643]
4. Barclay J L, Shostak A, Leliavski A, et al. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. Am J Physiol Endocrinol Metab 2013; 15; 304(10): 1053-1063. [DOI:10.1152/ajpendo.00512.2012]
5. Barnea M, Shamay A, Stark A H, Madar Z. A high-fat diet has a tissue-specific effect on adiponectin and related enzyme expression. Obesity 2006; 14(12): 2145-2153. [DOI:10.1038/oby.2006.251]
6. Bilal M, Nawaz A, Kado T, et al. Fate of adipocyte progenitors during adipogenesis in mice fed a high-fat diet. Mol Metab 2021; 1; 54: 101328. [DOI:10.1016/j.molmet.2021.101328]
7. Chen I S, Chang Y Y, Hsu C L, et al. Alleviative effects of deep-seawater drinking water on hepatic lipid accumulation and oxidation induced by a high-fat diet. J Chin Med Assoc 2013;1:76(2): 95-101. [DOI:10.1016/j.jcma.2012.10.008]
8. Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol 2017a;13(6): 338-351. [DOI:10.1038/nrendo.2016.222]
9. Cui J, Pang J, Lin YJ, et al. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. FASEB J 2017b; 31(6): 2533-2547. [DOI:10.1096/fj.201601103R]
10. de Almeida A R, Monte-Alegre S, Zanini M B, et al . Association between prehypertension, metabolic and inflammatory markers, decreased adiponectin and enhanced insulinemia in obese subjects. Nutr Metab (Lond) 2014; 11(1):1. [DOI:10.1186/1743-7075-11-25]
11. Eng J M, Estall J L. Diet-induced models of non-alcoholic fatty liver disease: food for thought on sugar, fat, and cholesterol. Cells 2021;16; 10(7): 1805. [DOI:10.3390/cells10071805]
12. Hara K, Yamauchi T, Kadowaki T. Adiponectin: an adipokine linking adipocytes and type 2 diabetes in humans. Curr Diab Rep 2005; 5(2): 136-140. [DOI:10.1007/s11892-005-0041-0]
13. Hui J M, Hodge A, Farrell G C, et al. Beyond insulin resistance in NASH: TNF-α or adiponectin? Hepatology 2004; 40(1): 46-54. [DOI:10.1002/hep.20280]
14. Jalalvand F, Amoli M M, Yaghmaei P, et al. Benzothiazole Thioflavin T improves obesity-related symptoms in mice. Period Biol 2016; 21:118(2). [DOI:10.18054/pb.2016.118.2.3592]
15. Kandasamy A D, Sung M M, Boisvenue J J, et al. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice. Nutr Diabetes 2012; 2(9): 45. [DOI:10.1038/nutd.2012.18]
16. Kang S J, Lee J E, Lee E K, et al. Fermentation with aquilariae lignum enhances the anti-diabetic activity of green tea in type II diabetic db/db mouse. Nutrients 2014; 9;6(9): 3536-3571. [DOI:10.3390/nu6093536]
17. Karkhaneh L, Yaghmaei P, Parivar K, et al. Effect of trans-chalcone on atheroma plaque formation, liver fibrosis and adiponectin gene expression in cholesterol-fed NMRI mice. Pharmacol Rep 2016; 1; 68(4): 720-727. [DOI:10.1016/j.pharep.2016.03.004]
18. Kuznetsova I M, Sulatskaya A I, Uversky V N, et al. A new trend in the experimental methodology for the analysis of the thioflavin T binding to amyloid fibrils. Mol Neurobiol 2012; 45: 488-498. [DOI:10.1007/s12035-012-8272-y]
19. Najafian M, Amini S, Dehestani B, et al. Thioflavin T effect in diabetic Wistar rats: reporting the antihyperglycemic property of an amyloid probing dye. Pharmacol Rep 2015; 67: 364-369. [DOI:10.1016/j.pharep.2014.10.013]
20. Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne) 2021; 18:12: 585887. [DOI:10.3389/fendo.2021.585887]
21. Polyzos S A, Kountouras J, Mantzoros C S. Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism 2015; 1;64(1): 60-78. [DOI:10.1016/j.metabol.2014.10.012]
22. Recena Aydos L, Aparecida do Amaral L, Serafim de Souza R, et al. Nonalcoholic fatty liver disease induced by high-fat diet in C57bl/6 models. Nutrients 2019; 16:11(12): 3067. [DOI:10.3390/nu11123067]
23. Seo SH, Fang F, Kang I. Ginger (Zingiber officinale) attenuates obesity and adipose tissue remodeling in high-fat diet-fed C57BL/6 mice. Int J Environ Res Public Health 2021; 18(2): 631. [DOI:10.3390/ijerph18020631]
24. Thorn S R, Rozance P J, Brown L D, et al. The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes. Semin Reprod Med 2011;29: 225-236. [DOI:10.1055/s-0031-1275516]
25. Tilg H, Moschen A R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006;1:6(10): 772-783. [DOI:10.1038/nri1937]
26. Tokarz V L, MacDonald P E, Klip A. The cell biology of systemic insulin function. J Cell Biol 2018; 2; 217(7): 2273-2289. [DOI:10.1083/jcb.201802095]
27. Watanabe S, Yaginuma R, Ikejima K, et al. Liver diseases and metabolic syndrome. Journal of Gastroenterology 2008; 43: 509-518. [DOI:10.1007/s00535-008-2193-6]
28. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7(8): 941-946. [DOI:10.1038/90984]
29. Ye J. Mechanisms of insulin resistance in obesity. Front Med 2013;7:14-24. [DOI:10.1007/s11684-013-0262-6]
30. Younossi Z M, Koenig A B, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73-84. [DOI:10.1002/hep.28431]
31. Zou Y, Li J, Lu C, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci 2006; 8;79(11): 1100-1107. [DOI:10.1016/j.lfs.2006.03.021]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.