Volume 29, Issue 2 (June 2025)                   Physiol Pharmacol 2025, 29(2): 155-170 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zhaeentan S, Amidi F, Moini A, Mohammadi S D, Sobhani A, Nataj Majd M et al . Identification of endometriosis molecular regulatory axes through bioinformatics analysis: insights into lncRNAs, miRNAs, and mRNAs. Physiol Pharmacol 2025; 29 (2) :155-170
URL: http://ppj.phypha.ir/article-1-2353-en.html
Abstract:   (980 Views)

Introduction: Endometriosis (EMS) is a highly prevalent gynecological disorder with substantial health consequences, affecting as many as 10% of women in their reproductive years. Although EMS is widespread, its intricate origin and pathophysiology are not well understood. This study investigated the molecular characteristics of EMS by examining the expression patterns of long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and genes linked to the condition.
Methods: The study used publicly accessible datasets, namely RNA-seq data for long non-coding RNAs (GSE105764), miRNA expression data (GSE105765), and gene expression data (GSE12768), to compare samples of ectopic and eutopic endometrial samples. The study conducted differential expression analysis, pathway enrichment analyses, protein-protein interaction network creation, and hub gene identification to uncover the molecular markers linked to EMS. 
Results: The investigation identified substantial dysregulation of lncRNAs, miRNAs, and genes in endometriotic tissues compared with the control eutopic endometrium. Hub genes, including CDH1, ESR1, GATA4, PGR, FOXA2, EPCAM, APOA1, BDNF, FGFR2, and PAX2, dominate the molecular landscape. miR-6500-3p has been identified as a pivotal regulator that influences the expression of seven essential genes. Pathway enrichment analysis identified biological processes, including embryonic organ morphogenesis, immunological response, and medication metabolism. Exploring lncRNA-mediated regulatory axes, particularly H19 and MIR600HG, suggests complex networks that may clarify the molecular underpinnings of EMS.
Conclusion: This thorough investigation offers significant insight into the molecular pathways underlying EMS. Hub genes and regulatory miRNAs, including miR-6500-3p, have been identified as prospective targets for therapeutic interventions. Pathway enrichment studies provide a more comprehensive understanding of the biological processes implicated in EMS, indicating new possibilities for therapeutic interventions.

Full-Text [PDF 2369 kb]   (50 Downloads)    

References
1. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 2019; 47: 330-338. [DOI:10.1093/nar/gky1055]
2. Agic A, Djalali S, Diedrich K, Hornung D. Apoptosis in endometriosis. Gynecol Obstet Invest 2009; 68: 217-223. [DOI:10.1159/000235871]
3. Borghese B, Mondon F, Noël J C, Fayt I, Mignot T M, Vaiman D, et al. Gene expression profile for ectopic versus eutopic endometrium provides new insights into endometriosis oncogenic potential. Mol Endocrinol 2008; 22: 2557-2562. [DOI:10.1210/me.2008-0322]
4. Borghese B, Zondervan K T, Abrao M S, Chapron C, Vaiman D. Recent insights on the genetics and epigenetics of endometriosis. Clin Genet 2017; 91: 254-264. [DOI:10.1111/cge.12897]
5. Brosens J J, Hodgetts A, Feroze-Zaidi F, Sherwin J R, Fusi L, Salker M S, et al. Proteomic analysis of endometrium from fertile and infertile patients suggests a role for apolipoprotein A-I in embryo implantation failure and endometriosis. Mol Hum Reprod 2010; 16: 273-285. [DOI:10.1093/molehr/gap108]
6. Chen M, Zhou Y, Xu H, Hill C, Ewing R M, He D, et al. Bioinformatic analysis reveals the importance of epithelial-mesenchymal transition in the development of endometriosis. Sci Rep 2020; 10: 8442. [DOI:10.1038/s41598-020-65606-9]
7. Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8 Suppl 4: S11. [DOI:10.1186/1752-0509-8-S4-S11]
8. Du Z, Fei T, Verhaak R G, Su Z, Zhang Y, Brown M, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013; 20: 908-913. [DOI:10.1038/nsmb.2591]
9. Dwiningsih S R, Meilani C, Hadi S. Brain derived neurotrophic factor as a non-invasive biomarker for detection of endometriosis. J Reprod Infertil 2022; 23: 207-212. [DOI:10.18502/jri.v23i3.10012]
10. Ferrero S, Gillott D J, Remorgida V, Anserini P, Leung K Y, Ragni N, et al. Proteomic analysis of peritoneal fluid in women with endometriosis. J Proteome Res 2007; 6: 3402-3411. [DOI:10.1021/pr060680q]
11. Fouquet B, Santulli P, Noel J C, Misrahi M. Ovarian-like differentiation in eutopic and ectopic endometrioses with aberrant FSH receptor, INSL3 and GATA4/6 expression. BBA Clin 2016; 6: 143-152. [DOI:10.1016/j.bbacli.2016.11.002]
12. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013; 14: 699-712. [DOI:10.1038/nrm3679]
13. Giacomini E, Minetto S, Li Piani L, Pagliardini L, Somigliana E, Viganò P. Genetics and Inflammation in endometriosis: Improving knowledge for development of new pharmacological strategies. Int J Mol Sci 2021; 22. [DOI:10.3390/ijms22169033]
14. Giudice L C. Clinical practice. Endometriosis. N Engl J Med 2010; 362: 2389-2398. [DOI:10.1056/NEJMcp1000274]
15. Halme J, Hammond M G, Hulka J F, Raj S G, Talbert L M. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 1984; 64: 151-154.
16. Jiang Q, Xue D, Shi F, Qiu J. Prognostic significance of an autophagy-related long non-coding RNA signature in patients with oral and oropharyngeal squamous cell carcinoma. Oncol Lett 2021; 21: 29. [DOI:10.3892/ol.2020.12290]
17. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44: 457-462. [DOI:10.1093/nar/gkv1070]
18. Kim H I, Kim T H, Yoo J Y, Young S L, Lessey B A, Ku B J, et al. ARID1A and PGR proteins interact in the endometrium and reveal a positive correlation in endometriosis. Biochem Biophys Res Commun 2021; 550: 151-157. [DOI:10.1016/j.bbrc.2021.02.144]
19. Li L, Guo X, Liu J, Chen B, Gao Z, Wang Q. The role of miR-27b-3p/HOXA10 axis in the pathogenesis of endometriosis. Ann Palliat Med 2021; 10: 3162-3170. [DOI:10.21037/apm-21-343]
20. Liang M L, Hsieh T H, Ng K H, Tsai Y N, Tsai C F, Chao M E, et al. Downregulation of miR-137 and miR-6500-3p promotes cell proliferation in pediatric high-grade gliomas. Oncotarget 2016; 7: 19723-19737. [DOI:10.18632/oncotarget.7736]
21. Lin A, Yin J, Cheng C, Yang Z, Yang H. Decreased expression of FOXA2 promotes eutopic endometrial cell proliferation and migration in patients with endometriosis. Reprod Biomed Online 2018; 36: 181-187. [DOI:10.1016/j.rbmo.2017.11.001]
22. Liu D, Yang N, Liang Y, Chen M, Yang F, Liu L, et al. Increased expression of epithelial cell adhesion molecule and its possible role in epithelial-mesenchymal transition in endometriosis. J Obstet Gynaecol Res 2020; 46: 2066-2075. [DOI:10.1111/jog.14401]
23. Liu S, Xin W, Lu Q, Tang X, Wang F, Shao W, et al. Knockdown of lncRNA H19 suppresses endometriosis in vivo. Braz J Med Biol Res 2021; 54: e10117. [DOI:10.1590/1414-431x202010117]
24. Liu Z, Liu L, Zhong Y, Cai M, Gao J, Tan C, et al. LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell Biosci 2019; 9: 84. [DOI:10.1186/s13578-019-0346-3]
25. Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550. [DOI:10.1186/s13059-014-0550-8]
26. Marla S, Mortlock S, Houshdaran S, Fung J, McKinnon B, Holdsworth-Carson S J, et al. Genetic risk factors for endometriosis near estrogen receptor 1 and coexpression of genes in this region in endometrium. Mol Hum Reprod 2021; 27. [DOI:10.1093/molehr/gaaa082]
27. Matias-Guiu X, Stewart C J R. Endometriosis-associated ovarian neoplasia. Pathology 2018; 50: 190-204. [DOI:10.1016/j.pathol.2017.10.006]
28. Matsuzaki S, Darcha C. In vitro effects of a small-molecule antagonist of the Tcf/ß-catenin complex on endometrial and endometriotic cells of patients with endometriosis. PLoS One 2013; 8: e61690. [DOI:10.1371/journal.pone.0061690]
29. Montgomery G W, Nyholt D R, Zhao Z Z, Treloar S A, Painter J N, Missmer S A, et al. The search for genes contributing to endometriosis risk. Hum Reprod Update 2008; 14: 447-457. [DOI:10.1093/humupd/dmn016]
30. Panir K, Schjenken J E, Robertson S A, Hull M L. Non-coding RNAs in endometriosis: a narrative review. Hum Reprod Update 2018; 24: 497-515. [DOI:10.1093/humupd/dmy014]
31. Paraskevopoulou M D, Hatzigeorgiou A G. Analyzing MiRNA-LncRNA Interactions. Methods Mol Biol 2016; 1402: 271-286. [DOI:10.1007/978-1-4939-3378-5_21]
32. Paraskevopoulou M D, Vlachos I S, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, et al. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 2016; 44: 231-238. [DOI:10.1093/nar/gkv1270]
33. Qian B, Liu Q, Wang C, Lu S, Ke S, Yin B, et al. Identification of MIR600HG/hsa-miR-342-3p/ANLN network as a potential prognosis biomarker associated with lmmune infiltrates in pancreatic cancer. Sci Rep 2023; 13: 15919. [DOI:10.1038/s41598-023-43174-y]
34. Ritchie M E, Phipson B, Wu D, Hu Y, Law C W, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47. [DOI:10.1093/nar/gkv007]
35. Riva P, Ratti A, Venturin M. The long Non-Coding RNAs in neurodegenerative diseases: Novel mechanisms of pathogenesis. Curr Alzheimer Res 2016; 13: 1219-1231. [DOI:10.2174/1567205013666160622112234]
36. Sampson J A. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol 1927; 3: 93-110.
37. Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The role of lncRNAs in gene expression regulation through mRNA stabilization. Noncoding RNA 2021; 7. [DOI:10.3390/ncrna7010003]
38. Şerifoğlu H, Arinkan S A, Pasin O, Vural F. Is there an association between endometriosis and thyroid autoimmunity? Rev Assoc Med Bras (1992) 2023; 69: e20221679. [DOI:10.1590/1806-9282.20221679]
39. Shafrir A L, Farland L V, Shah D K, Harris H R, Kvaskoff M, Zondervan K, et al. Risk for and consequences of endometriosis: A critical epidemiologic review. Best Pract Res Clin Obstet Gynaecol 2018; 51: 1-15. [DOI:10.1016/j.bpobgyn.2018.06.001]
40. Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498-2504. [DOI:10.1101/gr.1239303]
41. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One 2018; 13: e0206239. [DOI:10.1371/journal.pone.0206239]
42. Subramanian A, Tamayo P, Mootha V K, Mukherjee S, Ebert B L, Gillette M A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545-15550. [DOI:10.1073/pnas.0506580102]
43. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51: 638-646. [DOI:10.1093/nar/gkac1000]
44. Tomassetti C, D’Hooghe T. Endometriosis and infertility: Insights into the causal link and management strategies. Best Pract Res Clin Obstet Gynaecol 2018; 51: 25-33. [DOI:10.1016/j.bpobgyn.2018.06.002]
45. Trabert B, Schwartz S M, Peters U, De Roos A J, Chen C, Scholes D, et al. Genetic variation in the sex hormone metabolic pathway and endometriosis risk: an evaluation of candidate genes. Fertil Steril 2011; 96: 1401-1406. [DOI:10.1016/j.fertnstert.2011.09.004]
46. Vercellini P, Viganò P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol 2014; 10: 261-275. [DOI:10.1038/nrendo.2013.255]
47. Wan Y, Huang J, Song Y, Gu C, Kong J, Zuo L, et al. hsa-miR-340-5p inhibits epithelial-mesenchymal transition in endometriosis by targeting MAP3K2 and inactivating MAPK/ERK signaling. Open Med (Wars) 2022; 17: 566-576. [DOI:10.1515/med-2022-0448]
48. Wang S, Duan H, Li B, Hong W, Li X, Wang Y, et al. BDNF and TrKB expression levels in patients with endometriosis and their associations with dysmenorrhoea. J Ovarian Res 2022; 15: 35. [DOI:10.1186/s13048-022-00963-9]
49. Xiong X D, Ren X, Cai M Y, Yang J W, Liu X, Yang J M. Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells. Drug Resist Updat 2016; 26: 28-42. [DOI:10.1016/j.drup.2016.04.001]
50. Xu Y, Gao F, Zhang J, Cai P, Xu D. Fibroblast growth factor receptor 2 promotes the proliferation, migration, and invasion of ectopic stromal cells via activation of extracellular-signal-regulated kinase signaling pathway in endometriosis. Bioengineered 2022; 13: 8360-8371. [DOI:10.1080/21655979.2022.2054207]
51. Xu Z, Zhang L, Yu Q, Zhang Y, Yan L, Chen Z J. The estrogen-regulated lncRNA H19/miR-216a-5p axis alters stromal cell invasion and migration via ACTA2 in endometriosis. Mol Hum Reprod 2019; 25: 550-561. [DOI:10.1093/molehr/gaz040]
52. Yao Y, Li N. MIR600HG suppresses metastasis and enhances oxaliplatin chemosensitivity by targeting ALDH1A3 in colorectal cancer. Biosci Rep 2020; 40. [DOI:10.1042/BSR20200390]
53. Yu G, Wang L G, Han Y, He Q Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 2012; 16: 284-287. [DOI:10.1089/omi.2011.0118]
54. Yun B S, Won S, Kim J H, Lee N, Kim M, Kim M K, et al. PAX2, PAX8, and PR are correlated with ovarian seromucinous borderline tumor with endometriosis. J Ovarian Res 2022; 15: 41. [DOI:10.1186/s13048-022-00975-5]
55. Zhang P, Wang G. Progesterone resistance in endometriosis: Current evidence and putative mechanisms. Int J Mol Sci 2023; 24. [DOI:10.3390/ijms24086992]
56. Zhang T, De Carolis C, Man G C W, Wang C C. The link between immunity, autoimmunity and endometriosis: a literature update. Autoimmun Rev 2018; 17: 945-955. [DOI:10.1016/j.autrev.2018.03.017]
57. Zhao L, Gu C, Huang K, Fan W, Li L, Ye M, et al. Association between oestrogen receptor alpha (ESR1) gene polymorphisms and endometriosis: a meta-analysis of 24 case-control studies. Reprod Biomed Online 2016; 33: 335-349. [DOI:10.1016/j.rbmo.2016.06.003]
58. Zhao L, Gu C, Ye M, Zhang Z, Li L, Fan W, et al. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis. Reprod Biol Endocrinol 2018; 16: 4. [DOI:10.1186/s12958-017-0319-5]
59. Zhao L, Li Z, Chen W, Zhai W, Pan J, Pang H, et al. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition. Oncol Lett 2017; 13: 363-369. [DOI:10.3892/ol.2016.5389]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.