Volume 29, Issue 4 (December 2025)                   Physiol Pharmacol 2025, 29(4): 375-385 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Darabi S, Haghdoost- Yazdi H, Sofiabadi M, Esmaeili M H, Delashoob M. Serum levels of thyroid hormones change differently in the onset and progress phases of the experimental model of Parkinson’s disease in rats. Physiol Pharmacol 2025; 29 (4) :375-385
URL: http://ppj.phypha.ir/article-1-2394-en.html
Abstract:   (1680 Views)

Introduction: Changes in the levels of serum components can help in the early and differential diagnosis of Parkinson’s disease (PD). The lesion in the dopaminergic (DAergic) system is the main pathophysiological mechanism underlying PD. This system is closely related to the hypothalamic-pituitary-thyroid axis. Here, we examined the impact of PD onset, progress, and severity in rats on the serum levels of thyroid hormones (THs).
Methods: The neurotoxin 6-OHDA was injected into the medial forebrain bundle. Behavioral tests were carried out for eight weeks after the toxin to assess the severity of PD and its progress. Blood was collected before the toxin and in the third and eighth weeks afterward. THs levels were determined using specific ELISA kits.
Results: Our findings show that the THs levels changed significantly after the toxin. The levels of T3 and T4 decreased slightly in the third week but remarkably increased in the eighth week. The decrease in the third week depended on the severity of the PD and was observed only in the rats with severe behavioral symptoms. On the other hand, the increase in the eighth week occurred in all 6-OHDA-received rats with severe or mild behavioral symptoms.
Conclusion: Our data indicate that serum levels of THs may decrease and increase in PD. At the onset of the disease, the levels may decrease if DAergic neuronal death is severe. In the progress phase of PD, THs levels may increase independent of the severity of the disease.

Full-Text [PDF 616 kb]   (24 Downloads)    

References
1. Adani G, Filippini T, Michalke B, Vinceti M. Selenium and other trace elements in the etiology of Parkinson’s disease: a systematic review and meta-analysis of case-control studies. Neuroepidemiology 2020; 54 (1) :1-23. [DOI:10.1159/000502357]
2. Bay A A, Hart A R, Michael Caudle W, Corcos D M, Hackney M E. The association between Parkinson’s disease symptom side-of-onset and performance on the MDS-UPDRS scale part IV: Motor complications. Journal of the Neurological Sciences 2019; 15:396:262-265. [DOI:10.1016/j.jns.2018.12.002]
3. Chan Y K, Davis P F, Poppitt S D, Sun X, Greenhill N S, Krishnamurthi R, et al., Influence of tail versus cardiac sampling on blood glucose and lipid profiles in mice. Laboratory Animals 2012; 46(2):142-147. [DOI:10.1258/la.2011.011136]
4. Chaudhuri K R, Schapira A H. Non-motor symptom of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurology 2009; 8(5):464-474. [DOI:10.1016/S1474-4422(09)70068-7]
5. Chen S F, Yang Y C, Hsu C Y, Shen Y C. Risk of Parkinson’s disease in patients with hypothyroidism: A nationwide populatio n-based cohort study. Parkinsonism and Related Disorders 2020; 74: 28-32. [DOI:10.1016/j.parkreldis.2020.04.001]
6. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39 (6), 889-909. [DOI:10.1016/S0896-6273(03)00568-3]
7. Duval F, Mokrani M C, Danila V, Erb A, Gonzalez Lopera F, Tomsa M. Dopamine function and hypothalamic-pituitary-thyroid axis activity in major depressed patients with suicidal behavior. Brain Sci 2022;12(5):621. [DOI:10.3390/brainsci12050621]
8. Gupta A, Haboubi N, Thomas P. Screening for thyroid dysfunction in the elderly. Archives of Internal Medicine 2001;161(1):130. [DOI:10.1001/archinte.161.1.130]
9. Haghdoost-Yazdi H, Hosseini S S, Faraji A, Nahid D, Jahanihashemi H. 2010. Long term exposure to norharmane exacerbates 6-hydroxydopamine-induced parkinsonism: possible involvement of L-type Ca2+ channels. Behavioural Brain Research 2010; 215 (1): 136-140. [DOI:10.1016/j.bbr.2010.07.011]
10. Hassan W A, Aly M S, Rahman T A, Shahat A S. Impact of experimental hypothyroidism on monoamines level in discrete brain regions and other peripheral tissues of young and adult male rats. International Journal of Developmental Neuroscience 2013; 31(4): 225-33. [DOI:10.1016/j.ijdevneu.2013.02.001]
11. Hernandez-Baltazar D, Zavala-Flores L M, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: novel findings in an older model. Neurologia. 2017; 32(8):533-539. [DOI:10.1016/j.nrl.2015.06.011]
12. Iancu R, Mohapel P, Brundin P, Paul G. 2005. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behavioural Brain Research 2005; 162(1): 1-10. [DOI:10.1016/j.bbr.2005.02.023]
13. Davies J S, Morrish P K, Scanlon M F. Graves’ disease presenting as hemiparkinsonism. Journal of Endocrinological Investigation 2001; 24(3): 188-189. [DOI:10.1007/BF03343841]
14. Kim H T, Edwards M J, Lakshmi Narsimhan R, Bhatia K P. Hyperthyroidism exaggerating parkinsonian tremor: a clinical lesson. Parkinsonism and Related Disorders 2005; 11(5):331-332. [DOI:10.1016/j.parkreldis.2005.01.009]
15. Kimber J, Watson L, Mathias C J. Neuroendocrine responses to levodopa in multiple system atrophy (MSA). Movement Disorders. 1999;14(6):981-987. https://doi.org/10.1002/1531-8257(199911)14:6<981::AID-MDS1011>3.0.CO;2-W [DOI:10.1002/1531-8257(199911)14:63.0.CO;2-W]
16. Krulich L, Giachetti A, Marchlewska-Koj A, Hefco E, Jameson H E. On the role of the central noradrenergic and dopaminergic systems in the regulation of TSH secretion in the rat. Endocrinology 1977; 100: 496-505. [DOI:10.1210/endo-100-2-496]
17. Menezes E C, Santos P R, Goes T C, Carvalho V C B, Teixeira-Silva F, Stevens H E, et al. Effects of a rat model of gestational hypothyroidism on forebrain dopaminergic, GABAergic, and serotonergic systems and related behaviors. Behavioural Brain Research 2019; 366: 77-87. [DOI:10.1016/j.bbr.2019.03.027]
18. Minaei A, Haghdoost-Yazdi H. Dexmedetomidine attenuates the induction and reverses the progress of 6-hydroxydopamine- induced parkinsonism; involvement of KATP channels, alpha 2 adrenoceptors and anti-inflammatory mechanisms. Toxicology and Applied Pharmacology 2019; 1:382:114743. [DOI:10.1016/j.taap.2019.114743]
19. Minaei A, Sarookhani MR, Haghdoost-Yazdi H, Rajaei F. Hydrogen sulfide attenuates induction and prevents progress of the 6-hydroxydopamine-induced Parkinsonism in rat through activation of ATP-sensitive potassium channels and suppression of ER stress. Toxicology and Applied Pharmacology 2021; 15:423:115558. [DOI:10.1016/j.taap.2021.115558]
20. Nicola S, Surmeir J, Malemka R. Dopaminergic modulation of neuronal excitability in the striatum and nucleus acumbens. Annual Review of Neuroscience 2000; 23:185-215. [DOI:10.1146/annurev.neuro.23.1.185]
21. Ocak O, Sahin E M, Cam M. the relationship of thyroid hormone levels and motor symptoms in Parkinson’s disease. Duzce Medical Journal 2022; 24(2): 142-146. [DOI:10.18678/dtfd.1068664]
22. Oetting A. Yen P M. New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab 2007; 21(2): 193-208. [DOI:10.1016/j.beem.2007.04.004]
23. Pereira J C Jr, Pradella-Hallinan M, Lins Pessoa Hd. Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis. Clinics (Sao Paulo) 2010; 65(5):548-54. [DOI:10.1590/S1807-59322010000500013]
24. Piri H, Sharifi S, Nigjeh S, Haghdoost-Yazdi H. Dopaminergic neuronal death in the substantia nigra associates with change in serum levels of TNF-α and IL-1β; evidence from early experimental model of Parkinson’s disease. Neurological Research 2022; 44(6):544-553. [DOI:10.1080/01616412.2021.2024726]
25. Przegaliński E, Jaworska L, Budziszewska B. The role of dopamine receptors in the release of thyrotropin-releasing hormone from the rat striatum and nucleus accumbens: An in vitro study. Neuropeptides 1993; 25: 277-282. [DOI:10.1016/0143-4179(93)90044-B]
26. Reich S G, Savitt J M. Parkinson’s disease. Medical Clinics of North America 2019; 103(2):337-350. [DOI:10.1016/j.mcna.2018.10.014]
27. Rodrigues S F, de Oliveira M A, Martins J O, Sannomiya P, de Cássia Tostes R, Nigro D, Fortes Z B. Differential effects of chloral hydrate- and ketamine/xylazine-induced anesthesia by the s.c. route. Life Science 2006; 79:1630 -1637. [DOI:10.1016/j.lfs.2006.05.019]
28. Rye D B, Freeman A A H. Dopamine in Behavioral State Control, in Monti J M, Pandi-Perumal S R, and Sinton CM, editors: Neurochemistry of Sleep and Wakefulness. Cambridge University Press, Cambridge, 2008. 179-223. [DOI:10.1017/CBO9780511541674.008]
29. Saha J K, Xia J, Grondin J M, Engle S K, Jakubowski J A. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Experimental Biology and Medicine (Maywood, N.J.) 2005; 230:777-784. [DOI:10.1177/153537020523001012]
30. Scanlon M F, Weightman D R, Shale D J, Mora B, Heath M, Snow M H, et al. Dopamine is a physiological regulator of thyrotrophin (TSH) secretion in normal man. Clin. Endocrinology 1979; 10: 7-15. [DOI:10.1111/j.1365-2265.1979.tb03028.x]
31. Shulman J M, De Jager P L, Feany M B. Parkinson’s disease: genetics and pathogenesis. Annual Review of Pathology 2011; 6:193-222. [DOI:10.1146/annurev-pathol-011110-130242]
32. Tandeter H, Levy A, Gutman G, Shvartzman P. Subclinical thyroid disease in patients with Parkinson’s disease. Arch Gerontol Geriatr 2001; 33(3): 295-300. [DOI:10.1016/S0167-4943(01)00196-0]
33. Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, et al. Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. Journal of Parkinson’s Disease 2014; 4(3): 549-560. [DOI:10.3233/JPD-140389]
34. Umehara T, Matsuno H, Toyoda C, Oka H. Thyroid hormone level is associated with motor symptoms in de novo Parkinson’s disease. Journal of Neurology 2015; 262(7):1762-1768. [DOI:10.1007/s00415-015-7780-x]
35. Wang Z, Yang Y, Xiang X, Zhu Y, Men J, He M, et al., Estimation of the normal range of blood glucose in rats. Journal of hygiene research 2010; 39(2):133-7.
36. Wei Z, Li X, Li X, Liu Q, Cheng Y. Oxidative stress in Parkinson’s disease: a systematic review and meta-analysis. Frontiers in Molecular Neuroscience 2018; 11:236. [DOI:10.3389/fnmol.2018.00236]
37. Yuan H, Sarre S, Ebinger G, Michotte Y. Histological, behavioral and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson’s disease. Journal of Neuroscience Methods 2005; 144 (1), 35-45. [DOI:10.1016/j.jneumeth.2004.10.004]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.