Volume 29, Issue 4 (December 2025)                   Physiol Pharmacol 2025, 29(4): 476-483 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimian K, Khodagholi F, Asadi E, Alsadat Mousavi M, Asadi S. Exploring expression alterations in Mef2a, Tcf3, and Bdnf genes following maternal separation in the rat brain: implications for neural plasticity. Physiol Pharmacol 2025; 29 (4) :476-483
URL: http://ppj.phypha.ir/article-1-2410-en.html
Abstract:   (1641 Views)
Introduction: Mother-infant interaction is critical for neural development and maturation, with long-term molecular and behavioral impacts on offspring. Rats’ neonatal maternal separation (MS) has been introduced as a model of early life stress, which may be the basis of mental health condition in adulthood. In the present study, the gene expression of Mef2a, Tcf3, and Bdnf was studied in various brain regions of rat offspring that experienced MS to provide further insight into the molecular mechanism of MS.
Methods: In this experimental study, MS was applied in rat litters separated from their mothers for four hours/day from PND 2 to PND 14. Mef2a, Tcf3, and Bdnf gene expression in various brain areas of adult offspring was measured by qPCR, and results were compared with the control group by t-test statistics.
Results: Quantitative analyses indicated that Mef2a has been downregulated in the amygdala of offspring that experienced MS. Tcf3 gene expression was increased in the insula and striatum, while its level was decreased in the PFC of MS offspring. Bdnf was also upregulated in the insula but downregulated in the MS group’s PFC.
Conclusion: Neonatal MS-induced gene expression changes the molecular drivers of neural plasticity in the offspring’s central nervous system, which may be the basis of behavioral changes in adulthood. Further investigation of signaling pathways and behavioral modifications of rats that experienced MS may uncover the underlying mechanism of MS.
Full-Text [PDF 589 kb]   (26 Downloads)    

References
1. Aboghazleh R, Boyajian S D, Atiyat A, Udwan M, Al-Helalat M, Al-Rashaideh R. Rodent brain extraction and dissection: A comprehensive approach. MethodsX 2024; 12: 102516. [DOI:10.1016/j.mex.2023.102516]
2. Akhtar M W, Kim M-S, Adachi M, Morris M J, Qi X, Richardson J A, et al. In vivo analysis of MEF2 transcription factors in synapse regulation and neuronal survival. PloS One 2012; 7: e34863. [DOI:10.1371/journal.pone.0034863]
3. Andzelm M M, Vanness D, Greenberg M E, Linden D J. A late phase of long-term synaptic depression in cerebellar purkinje cells requires activation of MEF2. Cell Reports 2019; 26: 1089-1097. [DOI:10.1016/j.celrep.2019.01.004]
4. Asadi E, Khodagholi F, Asadi S, Kamsorkh H M, Kaveh N, Maleki A. Quality of early-life maternal care predicts empathy-like behavior in adult male rats: Linking empathy to BDNF gene expression in associated brain regions. Brain Research 2021; 1767: 147568. [DOI:10.1016/j.brainres.2021.147568]
5. Assali A, Harrington A J, Cowan C W. Emerging roles for MEF2 in brain development and mental disorders. Current Opinion in Neurobiology 2019; 59: 49-58. [DOI:10.1016/j.conb.2019.04.008]
6. Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? European Journal of Neuroscience 2022; 55: 2058-2075. [DOI:10.1111/ejn.15238]
7. Chen Y, Baram T Z. Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology 2016; 41: 197-206. [DOI:10.1038/npp.2015.181]
8. de Jaime-Soguero A, Abreu de Oliveira W A, Lluis F. The pleiotropic effects of the canonical Wnt pathway in early development and pluripotency. Genes 2018; 9: 93. [DOI:10.3390/genes9020093]
9. Gilmore J H, Knickmeyer R C, Gao W. Imaging structural and functional brain development in early childhood. Nature Reviews Neuroscience 2018; 19: 123-137. [DOI:10.1038/nrn.2018.1]
10. Greisen M H, Altar C A, Bolwig T G, Whitehead R, Wörtwein G. Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats. Journal of Neuroscience Research 2005; 79: 772-778. [DOI:10.1002/jnr.20418]
11. Guo X, Duan X, Suckling J, Chen H, Liao W, Cui Q, et al. Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder. Human Brain Mapping 2019; 40: 1264-1275. [DOI:10.1002/hbm.24447]
12. Khaledi F, Dehkordi H T, Zarean E, Shahrani M, Amini-Khoei H. Possible role of NO/NMDA pathway in the autistic-like behaviors induced by maternal separation stress in mice. Plos One 2023; 18: e0292631. [DOI:10.1371/journal.pone.0292631]
13. Koelman E M, Yeste-Vázquez A, Grossmann T N. Targeting the interaction of β-catenin and TCF/LEF transcription factors to inhibit oncogenic Wnt signaling. Bioorganic & Medicinal Chemistry 2022; 70: 116920. [DOI:10.1016/j.bmc.2022.116920]
14. Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology 2018; 38: 579-593. [DOI:10.1007/s10571-017-0510-4]
15. Kundakovic M, Champagne F A. Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology 2015; 40: 141-153. [DOI:10.1038/npp.2014.140]
16. Lee R S, Oswald L M, Wand G S. Early life stress as a predictor of co-occurring alcohol use disorder and post-traumatic stress disorder. Alcohol Research: Current Reviews 2018; 39: 147. [DOI:10.35946/arcr.v39.2.05]
17. Lehmann J, Feldon J. Long-term biobehavioral effects of maternal separation in the rat: consistent or confusing? Reviews in the Neurosciences 2000; 11: 383-408. [DOI:10.1515/REVNEURO.2000.11.4.383]
18. LeMoult J, Humphreys K L, Tracy A, Hoffmeister J-A, Ip E, Gotlib I H. Meta-analysis: exposure to early life stress and risk for depression in childhood and adolescence. Journal of the American Academy of Child & Adolescent Psychiatry 2020; 59: 842-855. [DOI:10.1016/j.jaac.2019.10.011]
19. Li Y Q, Wang X Y, Zhai H F, Zhang X Y, Kosten T, Lu L. Sex- and age-dependent effects of early postnatal sibling deprivation on spatial learning and memory in adult rats. Behavioural Brain Research 2008; 186: 138-42. [DOI:10.1016/j.bbr.2007.07.028]
20. Liu B, Ou W-C, Fang L, Tian C-W, Xiong Y. Myocyte enhancer factor 2A plays a central role in the regulatory networks of cellular physiopathology. Aging and Disease 2023; 14: 331. [DOI:10.14336/AD.2022.0825]
21. Mansouri M, Pouretemad H, Roghani M, Wegener G, Ardalan M. Autistic-like behaviours and associated brain structural plasticity are modulated by oxytocin in maternally separated rats. Behavioural Brain Research 2020; 393: 112756. [DOI:10.1016/j.bbr.2020.112756]
22. Morris A S, Criss M M, Silk J S, Houltberg B J. The impact of parenting on emotion regulation during childhood and adolescence. Child Development Perspectives 2017; 11: 233-238. [DOI:10.1111/cdep.12238]
23. Mulligan K A, Cheyette B N. Neurodevelopmental perspectives on Wnt signaling in psychiatry. Complex Psychiatry 2017; 2: 219-246. [DOI:10.1159/000453266]
24. Murrough J W, Abdallah C G, Anticevic A, Collins K A, Geha P, Averill L A, et al. Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Human Brain Mapping 2016; 37: 3214-3223. [DOI:10.1002/hbm.23235]
25. Nishi M. Effects of early-life stress on the brain and behaviors: implications of early maternal separation in rodents. International Journal of Molecular Sciences 2020; 21: 7212. [DOI:10.3390/ijms21197212]
26. Ohta K i, Suzuki S, Warita K, Kaji T, Kusaka T, Miki T. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. Journal of Neurochemistry 2017; 141: 179-194. [DOI:10.1111/jnc.13977]
27. Pai C S, Sharma P K, Huang H T, Loganathan S, Lin H, Hsu Y L, et al. The activating transcription factor 3 (Atf3) homozygous knockout mice exhibit enhanced conditioned fear and down regulation of hippocampal GELSOLIN. Frontiers in Molecular Neuroscience 2018; 11: 37. [DOI:10.3389/fnmol.2018.00037]
28. Pavuluri M, May A. I feel, therefore, I am: the insula and its role in human emotion, cognition and the sensory-motor system. Aims Neuroscience 2015; 2. [DOI:10.3934/Neuroscience.2015.1.18]
29. Pizzagalli D A, Roberts A C. Prefrontal cortex and depression. Neuropsychopharmacology 2022; 47: 225-246. [DOI:10.1038/s41386-021-01101-7]
30. Pon J R, Marra M A. MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget 2016; 7: 2297. [DOI:10.18632/oncotarget.6223]
31. Récamier-Carballo S, Estrada-Camarena E, López-Rubalcava C. Maternal separation induces long-term effects on monoamines and brain-derived neurotrophic factor levels on the frontal cortex, amygdala, and hippocampus: differential effects after a stress challenge. Behavioural Pharmacology 2017; 28: 545-557. [DOI:10.1097/FBP.0000000000000324]
32. Rincel M, Darnaudéry M. Maternal separation in rodents: a journey from gut to brain and nutritional perspectives. Proceedings of the Nutrition Society 2020; 79: 113-132. [DOI:10.1017/S0029665119000958]
33. Rivera-Olvera A, Rodríguez-Durán L F, Escobar M L. Conditioned taste aversion prevents the long-lasting BDNF-induced enhancement of synaptic transmission in the insular cortex: A metaplastic effect. Neurobiology of Learning and Memory 2016; 130: 71-76. [DOI:10.1016/j.nlm.2016.01.014]
34. Schiavone S, Colaianna M, Curtis L. Impact of early life stress on the pathogenesis of mental disorders: relation to brain oxidative stress. Current Pharmaceutical Design 2015; 21: 1404-1412. [DOI:10.2174/1381612821666150105143358]
35. Stein M B, Simmons A N, Feinstein J S, Paulus M P. Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry 2007; 164: 318-327. [DOI:10.1176/ajp.2007.164.2.318]
36. Teicher M H, Samson J A. Annual research review: enduring neurobiological effects of childhood abuse and neglect. Journal of Child Psychology and Psychiatry 2016; 57: 241-266. [DOI:10.1111/jcpp.12507]
37. Tenkumo C, Ohta K-i, Suzuki S, Warita K, Irie K, Teradaya S, et al. Repeated maternal separation causes transient reduction in BDNF expression in the medial prefrontal cortex during early brain development, affecting inhibitory neuron development. Heliyon 2020; 6(8):e04781. [DOI:10.1016/j.heliyon.2020.e04781]
38. Uddin L Q, Nomi J S, Hébert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. Journal of Clinical Neurophysiology 2017; 34: 300-306. [DOI:10.1097/WNP.0000000000000377]
39. Wang C S, Kavalali E T, Monteggia L M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022; 185: 62-76. [DOI:10.1016/j.cell.2021.12.003]
40. Wang D, Levine J L, Avila-Quintero V, Bloch M, Kaffman A. Systematic review and meta-analysis: effects of maternal separation on anxiety-like behavior in rodents. Translational Psychiatry 2020; 10: 174. [DOI:10.1038/s41398-020-0856-0]
41. Wang Q, Shao F, Wang W. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Frontiers in Molecular Neuroscience 2015; 8: 49. [DOI:10.3389/fnmol.2015.00049]
42. Wang X, Li M, Zhu H, Yu Y, Xu Y, Zhang W, et al. Transcriptional regulation involved in fear memory reconsolidation. Journal of Molecular Neuroscience 2018; 65: 127-140. [DOI:10.1007/s12031-018-1084-4]
43. Woo E, Sansing L H, Arnsten A F, Datta D. Chronic stress weakens connectivity in the prefrontal cortex: architectural and molecular changes. Chronic Stress 2021; 5: 24705470211029254. [DOI:10.1177/24705470211029254]
44. Zaletel I, Filipović D, Puškaš N. Hippocampal BDNF in physiological conditions and social isolation. Reviews in the Neurosciences 2017; 28: 675-692. [DOI:10.1515/revneuro-2016-0072]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.