Volume 29, Issue 3 (September 2025)                   Physiol Pharmacol 2025, 29(3): 272-283 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohsenvand Z, Sameni H R, ghanbari A, Mirmohammadkhani M, vafaei A A, Parsaei H, et al . Neuroprotective effects of Caffeic acid phenethyl ester administered with levodopa and benserazide in a rat model of Parkinson’s disease. Physiol Pharmacol 2025; 29 (3) : 5
URL: http://ppj.phypha.ir/article-1-2444-en.html
Abstract:   (1231 Views)
Introduction: Parkinson’s disease (PD) is a neurological disorder caused by the pathological destruction of dopaminergic neurons. Although it is commonly associated with motor symptoms, most patients also experience a range of non-motor symptoms, including mental health issues such as anxiety, depression, and memory loss. In this study, we investigated the effect of caffeic acid phenethyl ester (CAPE) on improving PD and reducing the side effects of levodopa.
Methods: Forty-nine male rats were randomly divided into seven groups. A PD model was induced by unilateral injection of 6-OHDA. A combination therapy involving three doses of CAPE (10, 20, and 40 μmol/kg) was administered, along with levodopa and benserazide. The animals were assessed during the study using various behavioral tests, such as tail suspension swing, apomorphine-induced rotation, elevated plus-maze, and open f ield. Additionally, histological tests, including Nissl staining and tyrosine hydroxylase (TH) immunohistochemistry, were performed to evaluate the animals further.
Results: Our research demonstrates that CAPE effectively reduces side effects associated with levodopa. Moreover, at higher doses, CAPE significantly improves non-motor symptoms, including anxiety and depression, in addition to enhancing motor function. Histological analysis also suggests a protective effect of CAPE on dopaminergic neurons in the substantia nigra.
Conclusion: The findings of this study suggest that co-administration of CAPE can help prevent L-DOPA-induced anxiety-like behaviors through its neuroprotective properties. Therefore, CAPE may have the potential as an adjunct therapy for the management of PD.
Article number: 5
Full-Text [PDF 1158 kb]   (55 Downloads)    

References
1. Ahlskog J E, Ahlskog J E. Other levodopa-responsive problems: anxiety, insomnia, and pain. dementia with lewy body and Parkinson’s disease patients: patient, family, and clinician working together for better outcomes: Oxford University Press, 2013: 101-108. [DOI:10.1093/oso/9780199977567.003.0015]
2. Baba Y, Futamura A, Kinno R, Nomoto S, Takahashi S, Yasumoto T, et al. The relationship between the distinct ratios of benserazide and carbidopa to levodopa and motor complications in Parkinson’s disease: A retrospective cohort study. Journal of the Neurological Sciences 2022; 437: 120263. [DOI:10.1016/j.jns.2022.120263]
3. C. Gonçalves V, J. L. L. Pinheiro D, de la Rosa T, G. de Almeida A-C, A. Scorza F, A. Scorza C. Propolis as a Potential Disease-Modifying Strategy in Parkinson’s disease: Cardioprotective and Neuroprotective Effects in the 6-OHDA Rat Model. Nutrients 2020; 12: 1551. [DOI:10.3390/nu12061551]
4. Celik S, Gorur S, Aslantas O, Erdogan S, Ocak S, Hakverdi S. Caffeic acid phenethyl ester suppresses oxidative stress in Escherichia coli-induced pyelonephritis in rats. Molecular and Cellular Biochemistry 2007; 297: 131-138. [DOI:10.1007/s11010-006-9337-x]
5. Chang K-H, Chen C-M. The role of oxidative stress in Parkinson’s disease. Antioxidants 2020; 9: 597. [DOI:10.3390/antiox9070597]
6. DeMaagd G, Philip A. Parkinson’s disease and its management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. P t 2015; 40: 504-532.
7. Deveci H A, Karapehlivan M. Chlorpyrifos-induced parkinsonian model in mice: Behavior, histopathology and biochemistry. Pesticide Biochemistry and Physiology 2018; 144: 36-41. [DOI:10.1016/j.pestbp.2017.11.002]
8. Eskow Jaunarajs K L, Angoa-Perez M, Kuhn D M, Bishop C. Potential mechanisms underlying anxiety and depression in Parkinson’s disease: consequences of l-DOPA treatment. Neuroscience & Biobehavioral Reviews 2011; 35: 556-564. [DOI:10.1016/j.neubiorev.2010.06.007]
9. Ghahari L, Safari M, Jaberi K R, Jafari B, Safari K, Madadian M. Mesenchymal stem cells with granulocyte colony-stimulating factor reduce stress oxidative factors in Parkinson’s disease. Iranian Biomedical Journal 2020; 24: 89. [DOI:10.29252/ibj.24.2.89]
10. Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Frontiers in Pharmacology 2020; 11: 356. [DOI:10.3389/fphar.2020.00356]
11. Goshima Y, Masukawa D, Kasahara Y, Hashimoto T, Aladeokin A C. l-DOPA and its receptor GPR143: implications for pathogenesis and therapy in Parkinson’s disease. Frontiers in Pharmacology 2019; 10. [DOI:10.3389/fphar.2019.01119]
12. Guo J D, Zhao X, Li Y, Li G R, Liu X L. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). International Journal of Molecular Medicine 2018; 41: 1817-1825. [DOI:10.3892/ijmm.2018.3406]
13. Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R. Dopamine and Levodopa Prodrugs for the Treatment of Parkinson’s Disease. Molecules 2017; 23. [DOI:10.3390/molecules23010040]
14. Iwaki H, Nishikawa N, Nagai M, Tsujii T, Yabe H, Kubo M, et al. Pharmacokinetics of levodopa/benserazide versus levodopa/carbidopa in healthy subjects and patients with Parkinson’s disease. Neurology and Clinical Neuroscience 2015; 3: 68-73. [DOI:10.1111/ncn3.152]
15. Jiang D-Q, Zang Q-M, Jiang L-L, Wang Y, Li M-X, Qiao J-Y. Comparison of pramipexole and levodopa/benserazide combination therapy versus levodopa/benserazide monotherapy in the treatment of Parkinson’s disease: a systematic review and meta-analysis. Naunyn-Schmiedeberg’s Archives of Pharmacology 2021; 394: 1893-1905. [DOI:10.1007/s00210-021-02089-z]
16. Kulkarni N P, Vaidya B, Narula A S, Sharma S S. Neuroprotective potential of caffeic acid phenethyl ester (CAPE) in CNS disorders: mechanistic and therapeutic insights. Current Neuropharmacology 2021; 19: 1401-1415. [DOI:10.2174/1570159X19666210608165509]
17. Kurauchi Y, Hisatsune A, Isohama Y, Mishima S, Katsuki H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. British Journal of Pharmacology 2012; 166: 1151-1168. [DOI:10.1111/j.1476-5381.2012.01833.x]
18. Liu X-L, Fan L, Yue B-H, Lou Z. Saikosaponin A mitigates the progression of Parkinson’s disease via attenuating microglial neuroinflammation through TLR4/MyD88/NF-κB pathway. European Review for Medical & Pharmacological Sciences 2023; 27.
19. Murros K E, Huynh V A, Takala T M, Saris P E. Desulfovibrio bacteria are associated with Parkinson’s disease. Frontiers in Cellular and Infection Microbiology 2021; 11: 652617. [DOI:10.3389/fcimb.2021.652617]
20. Omotoso G, Oloyede O, Lawal S, Gbadamosi I, Mutholib N, Abdulsalam F, et al. Permethrin exposure affects neurobehavior and cellular characterization in rats’ brain. Environmental analysis, health and toxicology 2020; 35. [DOI:10.5620/eaht.2020022]
21. Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Frontiers in Public Health 2021; 9. [DOI:10.3389/fpubh.2021.776847]
22. Puspita L, Chung S Y, Shim J-w. Oxidative stress and cellular pathologies in Parkinson’s disease. Molecular Brain 2017; 10: 1-12. [DOI:10.1186/s13041-017-0340-9]
23. Rahimi Jaberi K, Safari M, Semnani V, Sameni H R, Zarbakhsh S, Ghahari L. Caffeic Acid phenethyl ester with mesenchymal stem cells improves behavioral and histopathological changes in the rat model of Parkinson disease. Basic and Clinical Neuroscience 2022; 13: 637-646. [DOI:10.32598/bcn.2021.1398.1]
24. Rocca W A. The burden of Parkinson’s disease: a worldwide perspective. The Lancet Neurology 2018; 17: 928-929. [DOI:10.1016/S1474-4422(18)30355-7]
25. Rosa I, Di Censo D, Ranieri B, Di Giovanni G, Scarnati E, Alecci M, et al. Comparison between tail suspension swing test and standard rotation test in revealing early motor behavioral changes and neurodegeneration in 6-OHDA hemiparkinsonian rats. International Journal of Molecular Sciences 2020; 21: 2874. [DOI:10.3390/ijms21082874]
26. Safari M, Jafari B, Zarbakhsh S, Sameni H, Vafaei A A, Mohammadi N K, et al. G-CSF for mobilizing transplanted bone marrow stem cells in rat model of Parkinson’s disease. Iranian Journal of Basic Medical Sciences 2016; 19: 1318.
27. Sedaghat K, Yousefian Z, Vafaei A A, Rashidy-Pour A, Parsaei H, Khaleghian A, et al. Mesolimbic dopamine system and its modulation by vitamin D in a chronic mild stress model of depression in the rat. Behavioural Brain Research 2019; 356: 156-169. [DOI:10.1016/j.bbr.2018.08.020]
28. Shafia S, Vafaei A A, Samaei S A, Bandegi A R, Rafiei A, Valadan R, et al. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis-related proteins in a rat model of post-traumatic stress disorder. Neurobiology of Learning and Memory 2017; 139: 165-178. [DOI:10.1016/j.nlm.2017.01.009]
29. Soner B C, Acikgoz E, Inan S Y, Ayla S, Sahin A S, Oktem G. Neuroprotective effect of intrastriatal caffeic acid phenethyl ester treatment in 6-OH dopamine model of Parkinson’s disease in rats. Parkinsons Disease 2021; 2021: 5553480. [DOI:10.1155/2021/5553480]
30. Tolosa E, Garrido A, Scholz S W, Poewe W. Challenges in the diagnosis of Parkinson’s disease. The Lancet Neurology 2021; 20: 385-397. [DOI:10.1016/S1474-4422(21)00030-2]
31. Wang L H, Hsu K Y, Uang Y S, Hsu F L, Yang L M, Lin S J. Caffeic acid improves the bioavailability of L-dopa in rabbit plasma. Phytotherapy Research 2010; 24: 852-858. [DOI:10.1002/ptr.3031]
32. Yang X, Chen Y, Hong X, Wu N, Song L, Yuan W, et al. Levodopa/benserazide microspheres reduced levodopa-induced dyskinesia by downregulating phosphorylated GluR1 expression in 6-OHDA-lesioned rats. Drug Design, Development and Therapy 2012; 6: 341-347. [DOI:10.2147/DDDT.S38008]
33. Yuan H, Sarre S, Ebinger G, Michotte Y. Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson’s disease. Journal of Neuroscience Methods 2005; 144: 35-45. [DOI:10.1016/j.jneumeth.2004.10.004]
34. Zaitone S A, Ahmed E, Elsherbiny N M, Mehanna E T, El-Kherbetawy M K, ElSayed M H, et al. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: Relevance to Parkinson’s disease therapy. Pharmacological Reports 2019; 71: 32-41. [DOI:10.1016/j.pharep.2018.08.004]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.