Volume 29, Issue 3 (September 2025)                   Physiol Pharmacol 2025, 29(3): 260-271 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirehei M, Motamedi F, Maghsoudi N, Khodagholi F, Abbaszadeh F. The role of Bufexamac in reducing anxiety levels: focus on HPA axis dysfunction and neurotransmitter regulation in a rat model of Alzheimer’s disease. Physiol Pharmacol 2025; 29 (3) : 4
URL: http://ppj.phypha.ir/article-1-2413-en.html
Abstract:   (1350 Views)
Introduction: Alzheimer’s disease (AD) is a neurocognitive disorder characterized by neuropsychiatric symptoms (NPS), particularly anxiety. The underlying mechanisms involve disruptions in the hypothalamic-pituitary-adrenal (HPA) axis, and altered serotonergic signaling due to amyloid-beta (Aβ) accumu-lation. This study investigates the effects of Bufexamac, a Cyclooxygenase-2 (COX-2), and HDAC Class IIb inhibitor, on anxiety-like behaviors and neurochemical changes in a rat model of AD induced by Aβ.
Methods: 18 adult Wistar rats were divided into three groups: Saline, Aβ, and Aβ + Bufexamac. Aβ25-35 was administered via intracerebroventricular injection, followed by daily Bufexamac treatment for eight days. Anxiety-like behaviors were assessed using the open-field test, while Western blotting and ELISA measured levels of glucocorticoid receptors (GR), corticotropin releasing factor (CRF), and serotonin in the amygdala.
Results: Bufexamac significantly mitigated Aβ-induced anxiety-like behaviors, as evidenced by increased line crossings and time spent in the center of the arena (P<0.05). Western blot analysis revealed that Bufexamac reduced elevated GR levels in the Aβ group (P<0.05). Additionally, Bufexamac treat-ment significantly regulated serotonin (P<0.01) and CRF levels (P<0.05) in the amygdala compared to the Aβ group.
Conclusion: Bufexamac effectively alleviates anxiety-like behaviors and restores neurochemical alterations in a rat model of AD, suggesting its potential as a possible therapeutic agent targeting neuropsychiatric symptoms associated with AD. Further research is warranted to explore its clinical applicability.
Article number: 4
Full-Text [PDF 540 kb]   (34 Downloads)    

References
1. Abd Elkader H-T A E, Hussein M M, Mohammed N A, Abdou H M. The protective role of l-carnitine on oxidative stress, neurotransmitter perturbations, astrogliosis, and apoptosis induced by thiamethoxam in the brains of male rats. Naunyn-Schmiedeberg’s Archives of Pharmacology 2024; 397: 4365-4379. [DOI:10.1007/s00210-023-02887-7]
2. Ahmad M H, Fatima M, Mondal A C. Role of hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and insulin signaling in the pathophysiology of Alzheimer’s disease. Neuropsychobiology 2019; 77: 197-205. [DOI:10.1159/000495521]
3. Aminyavari S, Zahmatkesh M, Khodagholi F, Sanati M. Anxiolytic impact of Apelin-13 in a rat model of Alzheimer’s disease: Involvement of glucocorticoid receptor and FKBP5. Peptides 2019; 118: 170102. [DOI:10.1016/j.peptides.2019.170102]
4. Andrews P W, Bosyj C, Brenton L, Green L, Gasser P J, Lowry C A, et al. All the brain’s a stage for serotonin: the forgotten story of serotonin diffusion across cell membranes. Proceedings of the Royal Society B 2022; 289: 20221565. [DOI:10.1098/rspb.2022.1565]
5. Asaoka N, Nagayasu K, Nishitani N, Yamashiro M, Shirakawa H, Nakagawa T, et al. Inhibition of histone deacetylases enhances the function of serotoninergic neurons in organotypic raphe slice cultures. Neuroscience Letters 2015; 593: 72-77. [DOI:10.1016/j.neulet.2015.03.028]
6. Athira K, Madhana R M, Js I C, Lahkar M, Sinha S, Naidu V. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behavioural Brain Research 2018; 344: 73-84. [DOI:10.1016/j.bbr.2018.02.009]
7. Baglietto-Vargas D, Medeiros R, Martinez-Coria H, LaFerla F M, Green K N. Mifepristone alters amyloid precursor protein processing to preclude amyloid beta and also reduces tau pathology. Biological Psychiatry 2013; 74: 357-366. [DOI:10.1016/j.biopsych.2012.12.003]
8. Bantscheff M, Hopf C, Savitski M M, Dittmann A, Grandi P, Michon A-M, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotechnology 2011; 29: 255-265. [DOI:10.1038/nbt.1759]
9. Bisht K, Sharma K, Tremblay M-È. Chronic stress as a risk factor for Alzheimer’s disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiology of Stress 2018; 9: 9-21. [DOI:10.1016/j.ynstr.2018.05.003]
10. Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25-35 model of Alzheimer’s disease: Potential for screening of new therapeutic agents. Pharmacology & Therapeutics 2023; 245: 108398. [DOI:10.1016/j.pharmthera.2023.108398]
11. Cassano G B, Rossi N B, Pini S. Psychopharmacology of anxiety disorders. Dialogues in Clinical Neuroscience 2002; 4: 271-285. [DOI:10.31887/DCNS.2002.4.3/gcassano]
12. Charnay Y, Léger L. Brain serotonergic circuitries. Dialogues in clinical neuroscience 2010; 12: 471-487. [DOI:10.31887/DCNS.2010.12.4/ycharnay]
13. Chen Y, Dang M, Zhang Z. Brain mechanisms underlying neuropsychiatric symptoms in Alzheimer’s disease: a systematic review of symptom-general and-specific lesion patterns. Molecular Neurodegeneration 2021; 16: 38. [DOI:10.1186/s13024-021-00456-1]
14. Claeysen S, Bockaert J, Giannoni P. Serotonin: a new hope in Alzheimer’s disease? ACS Chem Neurosci 2015; 6: 940-943. [DOI:10.1021/acschemneuro.5b00135]
15. Curran K P, Chalasani S H. Serotonin circuits and anxiety: what can invertebrates teach us? Invertebrate Neuroscience 2012; 12: 81-92. [DOI:10.1007/s10158-012-0140-y]
16. Espallergues J, Teegarden S L, Veerakumar A, Boulden J, Challis C, Jochems J, et al. HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. Journal of Neuroscience 2012; 32: 4400-4416. [DOI:10.1523/JNEUROSCI.5634-11.2012]
17. Ferretti L, McCurry S M, Logsdon R, Gibbons L, Teri L. Anxiety and Alzheimer’s disease. Journal of Geriatric Psychiatry and Neurology 2001; 14: 52-58. [DOI:10.1177/089198870101400111]
18. Grazia Morgese M, Tucci P, Colaianna M, Zotti M, Cuomo V, Schiavone S, et al. Modulatory activity of soluble beta amyloid on HPA axis function in rats. Current Pharmaceutical Design 2014; 20: 2539-2546. [DOI:10.2174/13816128113199990500]
19. Gulpers B J, Voshaar R C O, van Boxtel M P, Verhey F R, Köhler S. Anxiety as a risk factor for cognitive decline: a 12-year follow-up cohort study. The American Journal of Geriatric Psychiatry 2019; 27: 42-52. [DOI:10.1016/j.jagp.2018.09.006]
20. He Y, Han Y, Liao X, Zou M, Wang Y. Biology of cyclooxygenase-2: An application in depression therapeutics. Frontiers in Psychiatry 2022; 13: 1037588. [DOI:10.3389/fpsyt.2022.1037588]
21. Hinds J A, Sanchez E R. The role of the hypothalamus-pituitary-adrenal (HPA) axis in test-induced anxiety: assessments, physiological responses, and molecular details. Stresses 2022; 2: 146-155. [DOI:10.3390/stresses2010011]
22. Huang H J, Huang H Y, Hsieh-Li H M. MGCD 0103, a selective histone deacetylase inhibitor, coameliorates oligomeric Aβ25-35-induced anxiety and cognitive deficits in a mouse model. CNS Neuroscience & Therapeutics 2019; 25: 175-186. [DOI:10.1111/cns.13029]
23. Jia M, Liu W-X, Sun H-L, Chang Y-Q, Yang J-J, Ji M-H, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, attenuates postoperative cognitive dysfunction in aging mice. Frontiers in Molecular Neuroscience 2015; 8: 52. [DOI:10.3389/fnmol.2015.00052]
24. Jochems J, Teegarden S L, Chen Y, Boulden J, Challis C, Ben-Dor G A, et al. Enhancement of stress resilience through histone deacetylase 6-mediated regulation of glucocorticoid receptor chaperone dynamics. Biological Psychiatry 2015; 77: 345-355. [DOI:10.1016/j.biopsych.2014.07.036]
25. Kruger N J. The Bradford method for protein quantitation. The protein protocols handbook 2009: 17-24. [DOI:10.1007/978-1-59745-198-7_4]
26. Lanté F, Chafai M, Raymond E F, Salgueiro Pereira A R, Mouska X, Kootar S, et al. Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2015; 40: 1772-1781. [DOI:10.1038/npp.2015.25]
27. Lee J B, Wei J, Liu W, Cheng J, Feng J, Yan Z. Histone deacetylase 6 gates the synaptic action of acute stress in prefrontal cortex. The Journal of physiology 2012; 590: 1535-1546. [DOI:10.1113/jphysiol.2011.224907]
28. Liu Y, Wang X, Wang J, Jin Q, Cai W, Pan C, et al. Class IIb Histone Deacetylase Participates in Postoperative Cognitive Dysfunction in Elderly Mice via HSP90/GR Signaling Pathway. 2023. [DOI:10.21203/rs.3.rs-3240629/v1]
29. Lucey B P. It’s complicated: The relationship between sleep and Alzheimer’s disease in humans. Neurobiology of Disease 2020; 144: 105031. [DOI:10.1016/j.nbd.2020.105031]
30. Lyketsos C G, Carrillo M C, Ryan J M, Khachaturian A S, Trzepacz P, Amatniek J, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s & Dementia 2011; 7: 532-539. [DOI:10.1016/j.jalz.2011.05.2410]
31. Mansouri Z, Motamedi F, Khodagholi F, Zahmatkesh M. Histone Deacetylase Class IIb Inhibition Improves Amyloid-Β-Induced Learning and Memory Deficits in Male Rats. Basic and Clinical Neuroscience 2025; 16: 583-594. [DOI:10.32598/bcn.2024.2822.2]
32. May C, Rapoport S, Tomai T, Chrousos G, Gold P. Cerebrospinal fluid concentrations of corticotropin-releasing hormone (CRH) and corticotropin (ACTH) are reduced in patients with Alzheimer’s disease. Neurology 1987; 37: 535-535. [DOI:10.1212/WNL.37.3.535]
33. Mendez M F. The relationship between anxiety and Alzheimer’s disease. Journal of Alzheimer’s Disease Reports 2021; 5: 171-177. [DOI:10.3233/ADR-219003]
34. Morgan A, Kondev V, Bedse G, Baldi R, Marcus D, Patel S. Cyclooxygenase-2 inhibition reduces anxiety-like behavior and normalizes enhanced amygdala glutamatergic transmission following chronic oral corticosterone treatment. Neurobiology of Stress 2019; 11: 100190. [DOI:10.1016/j.ynstr.2019.100190]
35. Mouradian M M, Farah Jr J M, Mohr E, Fabbrini G, O’Donohue T L, Chase T N. Spinal fluid CRF reduction in Alzheimer’s disease. Neuropeptides 1986; 8: 393-400. [DOI:10.1016/0143-4179(86)90010-7]
36. Nemeroff C B, Kizer J S, Reynolds G P, Bissette G. Neuropeptides in Alzheimer’s disease: a postmortem study. Regulatory Peptides 1989; 25: 123-130. [DOI:10.1016/0167-0115(89)90254-1]
37. Olariu A, Tran M, Yamada K, Mizuno M, Hefco V, Nabeshima T. Memory deficits and increased emotionality induced by β-amyloid (25-35) are correlated with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus. Journal of Neural Transmission 2001; 108: 1065-1079. [DOI:10.1007/s007020170025]
38. Park H-S, Kim J, Ahn S H, Ryu H-Y. Epigenetic targeting of histone deacetylases in diagnostics and treatment of depression. International Journal of Molecular Sciences 2021; 22: 5398. [DOI:10.3390/ijms22105398]
39. Peedicayil J. The potential role of epigenetic drugs in the treatment of anxiety disorders. Neuropsychiatric Disease and Treatment 2020: 597-606. [DOI:10.2147/NDT.S242040]
40. Pentkowski N S, Berkowitz L E, Thompson S M, Drake E N, Olguin C R, Clark B J. Anxiety-like behavior as an early endophenotype in the TgF344-AD rat model of Alzheimer’s disease. Neurobiology of Aging 2018; 61: 169-176. [DOI:10.1016/j.neurobiolaging.2017.09.024]
41. Reul J, Kloet E D. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985; 117: 2505-2511. [DOI:10.1210/endo-117-6-2505]
42. Reyna N C, Clark B J, Hamilton D A, Pentkowski N S. Anxiety and Alzheimer’s disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Frontiers in Aging Neuroscience 2023; 15: 1251075. [DOI:10.3389/fnagi.2023.1251075]
43. Saklatvala J. Glucocorticoids: do we know how they work? Arthritis Research & Therapy 2002; 4: 146. [DOI:10.1186/ar398]
44. Seemiller L, Mooney-Leber S, Henry E, McGarvey A, Druffner A, Peltz G, et al. Genetic background determines behavioral responses during fear conditioning. Neurobiology of Learning and Memory 2021; 184: 107501. [DOI:10.1016/j.nlm.2021.107501]
45. Shi C, Davis M. Visual pathways involved in fear conditioning measured with fear-potentiated startle: behavioral and anatomic studies. Journal of Neuroscience 2001; 21: 9844-9855. [DOI:10.1523/JNEUROSCI.21-24-09844.2001]
46. Smolinsky A N, Bergner C L, LaPorte J L, Kalueff A V. Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. Mood and Anxiety Related Phenotypes in Mice 2009: 21-36. [DOI:10.1007/978-1-60761-303-9_2]
47. Stout S C, Owens M J, Lindsey K P, Knight D L, Nemeroff C B. Effects of sodium valproate on corticotropin-releasing factor systems in rat brain. Neuropsychopharmacology 2001; 24: 624-631. [DOI:10.1016/S0893-133X(00)00243-8]
48. Swaab D, Raadsheer F, Endert E, Hofman M, Kamphorst W, Ravid R. Increased cortisol levels in aging and Alzheimer’s disease in postmortem cerebrospinal fluid. Journal of Neuroendocrinology 1994; 6: 681-687. [DOI:10.1111/j.1365-2826.1994.tb00635.x]
49. Tran L, Schulkin J, Ligon C, Meerveld G-V. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Molecular Psychiatry 2015; 20: 1219-1231. [DOI:10.1038/mp.2014.122]
50. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 1981; 213: 1394-1397. [DOI:10.1126/science.6267699]
51. Vandael D, Gounko N V. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer’s disease and stress disorders. Translational Psychiatry 2019; 9: 272. [DOI:10.1038/s41398-019-0581-8]
52. Woolley J D, Khan B K, Murthy N K, Miller B L, Rankin K P. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. The Journal of Clinical Psychiatry 2011; 72: 4437. [DOI:10.4088/JCP.10m06382oli]
53. Zhang L, Chen C, Qi J. HDAC4 regulates GR signaling contributes to stress-induced hyperalgesia in the medial prefrontal cortex. Brain Research 2019. [DOI:10.21203/rs.2.16837/v1]
54. Zhang Y-M, Zhang M-Y, Wei R-M, Zhang J-Y, Zhang K-X, Luo B-L, et al. Subsequent maternal sleep deprivation aggravates neurobehavioral abnormalities, inflammation, and synaptic function in adult male mice exposed to prenatal inflammation. Frontiers in Behavioral Neuroscience 2023; 17: 1226300. [DOI:10.3389/fnbeh.2023.1226300]
55. Zussy C, Brureau A, Delair B, Marchal S, Keller E, Ixart G, et al. Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid β fragment in rats. The American Journal of Pathology 2011; 179: 315-334. [DOI:10.1016/j.ajpath.2011.03.021]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.