1. Abbasi Z, Khaksari M, Shayannia A, Jafarisani M, Abbaszadeh-Goudarzi G, Nazarnezhad S, et al. Protection of the PC12 cells by nesfatin-1 against methamphetamine-induced neurotoxicity. International Journal of Peptide Research and Therapeutics 2022; 28: 1-10. [
DOI:10.1007/s10989-022-10417-x]
2. Ahmadzadeh-Darinsoo M, Ahmadzadeh-Darinsoo M, Abbasi S, Arefian E, Bernard C, Tafreshi A P. Altered expression of miR-29a-3p and miR-34a-5p by specific inhibition of GSK3β in the MPP+ treated SH-SY5Y Parkinson’s model. Non-coding RNA Research 2022; 7: 1-6. [
DOI:10.1016/j.ncrna.2021.12.004]
3. An X, Fu Z, Mai C, Wang W, Wei L, Li D, et al. Increasing the TRPM2 channel expression in human neuroblastoma SH-SY5Y cells augments the susceptibility to ROS-induced cell death. Cells 2019; 8: 28. [
DOI:10.3390/cells8010028]
4. Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R. Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 2014; 39: 1066. [
DOI:10.1038/npp.2013.307]
5. Beurel E, Grieco S F, Jope R S. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacology & Therapeutics 2015; 148: 114-131. [
DOI:10.1016/j.pharmthera.2014.11.016]
6. Cao J, Guo B, Li S, Zhang X, Zhang X, Zhang G, et al. Neuroprotection against 1-Methyl-4-phenylpyridinium-induced cytotoxicity by naturally occurring polydatin through activation of transcription factor MEF2D. NeuroReport 2021; 32: 1065-1072. [
DOI:10.1097/WNR.0000000000001696]
7. Carter Y M, Kunnimalaiyaan S, Chen H, Gamblin T C, Kunnimalaiyaan M. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth. Cancer Biology & Therapy 2014; 15: 510-515. [
DOI:10.4161/cbt.28015]
8. Chen W, Cai W, Hoover B, Kahn C R. Insulin action in the brain: cell types, circuits, and diseases. Trends in Neurosciences 2022. [
DOI:10.1016/j.tins.2022.03.001]
9. Cheng P-W, Wu Y-C, Wong T-Y, Sun G-C, Tseng C-J. Mechanical stretching-induced traumatic brain injury is mediated by the formation of GSK-3β-Tau complex to impair insulin signaling transduction. Biomedicines 2021; 9: 1650. [
DOI:10.3390/biomedicines9111650]
10. Cheng Z, Tseng Y, White M F. Insulin signaling meets mitochondria in metabolism. Trends in Endocrinology & Metabolism 2010; 21: 589-598. [
DOI:10.1016/j.tem.2010.06.005]
11. Choi W-S, Kim H-W, Xia Z. Preparation of primary cultured dopaminergic neurons from mouse brain. Neural Development: Springer, 2013: 61-69. [
DOI:10.1007/978-1-62703-444-9_6]
12. Claros S, Cabrera P, Valverde N, Romero-Zerbo S Y, López-González M V, Shumilov K, et al. Insulin-like growth factor II prevents MPP+ and glucocorticoid mitochondrial-oxidative and neuronal damage in dopaminergic neurons. Antioxidants 2021; 11: 41. [
DOI:10.3390/antiox11010041]
13. Collins L M, Dal Bo G, Calcagno M, Monzón-Sandoval J, Sullivan A M, Gutierrez H, et al. Nociceptin/orphanin FQ inhibits the survival and axon growth of midbrain dopaminergic neurons through a p38-MAPK dependent mechanism. Molecular Neurobiology 2016; 53: 7284-7297. [
DOI:10.1007/s12035-015-9611-6]
14. Deng X, Cai N-S, McCoy M T, Chen W, Trush M A, Cadet J L. Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 2002; 42: 837-845. [
DOI:10.1016/S0028-3908(02)00034-5]
15. Duarte A I, Moreira P I, Oliveira C R. Insulin in central nervous system: more than just a peripheral hormone. Journal of Aging Research 2012; 2012. [
DOI:10.1155/2012/384017]
16. Enman N M, Unterwald E M. Inhibition of GSK3 attenuates amphetamine-induced hyperactivity and sensitization in the mouse. Behavioural Brain Research 2012; 231: 217-225. [
DOI:10.1016/j.bbr.2012.03.027]
17. Ferrucci M, Busceti C L, Lazzeri G, Biagioni F, Puglisi-Allegra S, Frati A, et al. Bacopa protects against neurotoxicity induced by MPP+ and methamphetamine. Molecules 2022; 27: 5204. [
DOI:10.3390/molecules27165204]
18. Figlewicz D, Evans S, Murphy J, Hoen M, Baskin D. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Research 2003; 964: 107-115. [
DOI:10.1016/S0006-8993(02)04087-8]
19. Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Molecular Neurobiology 2013; 47: 145-171. [
DOI:10.1007/s12035-012-8339-9]
20. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F H, et al. Phosphorylation of tau and α-synuclein induced neurodegeneration in MPTP mouse model of Parkinson’s disease. Neuropsychiatric Disease and Treatment 2020; 16: 651. [
DOI:10.2147/NDT.S235562]
21. Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, et al. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson’s disease. CNS Neuroscience & Therapeutics 2021; 27: 308-319. [
DOI:10.1111/cns.13609]
22. Kanthasamy A, Anantharam V, Ali S F, Kanthasamy A. Methamphetamine induces autophagy and apoptosis in a mesencephalic dopaminergic neuronal culture model: role of cathepsin-D in methamphetamine-induced apoptotic cell death. Annals of the New York Academy of Sciences 2006; 1074: 234-244. [
DOI:10.1196/annals.1369.022]
23. Kanthasamy K, Gordon R, Jin H, Anantharam V, Ali S, G Kanthasamy A, et al. Neuroprotective effect of resveratrol against methamphetamine-induced dopaminergic apoptotic cell death in a cell culture model of neurotoxicity. Current Neuropharmacology 2011; 9: 49-53. [
DOI:10.2174/157015911795017353]
24. Kousik S M, Carvey P M, Napier T C. Methamphetamine self-administration results in persistent dopaminergic pathology: implications for Parkinson’s disease risk and reward-seeking. European Journal of Neuroscience 2014; 40: 2707-2714. [
DOI:10.1111/ejn.12628]
25. Kunnimalaiyaan S, Gamblin T C, Kunnimalaiyaan M. Glycogen synthase kinase-3 inhibitor AR-A014418 suppresses pancreatic cancer cell growth via inhibition of GSK-3-mediated Notch1 expression. HPB 2015; 17: 770-776. [
DOI:10.1111/hpb.12442]
26. Kunnimalaiyaan S, Schwartz V K, Jackson I A, Gamblin T C, Kunnimalaiyaan M. Antiproliferative and apoptotic effect of LY2090314, a GSK-3 inhibitor, in neuroblastoma in vitro. BMC Cancer 2018; 18: 560. [
DOI:10.1186/s12885-018-4474-7]
27. Kuroki H, Anraku T, Kazama A, Bilim V, Tasaki M, Schmitt D, et al. 9-ING-41, a small molecule inhibitor of GSK-3beta, potentiates the effects of anticancer therapeutics in bladder cancer. Scientific Reports 2019; 9: 1-9. [
DOI:10.1038/s41598-019-56461-4]
28. Liao L-s, Lu S, Yan W-t, Wang S-c, Guo L-m, Yang Y-d, et al. The role of HSP90α in methamphetamine/hyperthermia-induced necroptosis in rat striatal neurons. Frontiers in Pharmacology 2021; 12: 716394. [
DOI:10.3389/fphar.2021.716394]
29. Lin M, Chandramani-Shivalingappa P, Jin H, Ghosh A, Anantharam V, Ali S, et al. Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neuroscience 2012; 210: 308-332. [
DOI:10.1016/j.neuroscience.2012.03.004]
30. Lu C-C, Chu P-Y, Hsia S-M, Wu C-H, Tung Y-T, Yen G-C. Insulin induction instigates cell proliferation and metastasis in human colorectal cancer cells. International Journal of Oncology 2017; 50: 736-744. [
DOI:10.3892/ijo.2017.3844]
31. Marshall J F, O’Dell S J. Methamphetamine influences on brain and behavior: Unsafe at any speed? Trends in Neurosciences 2012; 35: 536-545. [
DOI:10.1016/j.tins.2012.05.006]
32. Mathuram T L, Ravikumar V, Reece L M, Karthik S, Sasikumar C S, Cherian K M. Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation. Environmental Toxicology and Pharmacology 2016; 46: 194-205. [
DOI:10.1016/j.etap.2016.07.013]
33. Mathuram T L, Venkatesan T, Das J, Natarajan U, Rathinavelu A. The apoptotic effect of GSK-3 inhibitors: BIO and CHIR 98014 on H1975 lung cancer cells through ROS generation and mitochondrial dysfunction. Biotechnology Letters 2020: 1-18. [
DOI:10.1007/s10529-020-02861-w]
34. Maurer U, Preiss F, Brauns-Schubert P, Schlicher L, Charvet C. GSK-3-at the crossroads of cell death and survival. Journal of Cell Science 2014; 127: 1369-1378. [
DOI:10.1242/jcs.138057]
35. Mirakabad F S T, Khoramgah M S, Abdollahifar M-A, Tehrani A S, Rezaei-Tavirani M, Niknazar S, et al. NUPR1-CHOP experssion, autophagosome formation and apoptosis in the postmortem striatum of chronic methamphetamine user. Journal of Chemical Neuroanatomy 2021; 114: 101942. [
DOI:10.1016/j.jchemneu.2021.101942]
36. Moosavi M, Farrokhi M R, Tafreshi N. The effect of curcumin against 6-hydroxydopamine induced cell death and Akt/GSK disruption in human neuroblastoma cells. Physiology and Pharmacology 2018; 22: 163-171.
37. Pang Y, Lin S, Wright C, Shen J, Carter K, Bhatt A, et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience 2016; 318: 157-165. [
DOI:10.1016/j.neuroscience.2016.01.020]
38. Pitaksalee R, Sanvarinda Y, Sinchai T, Sanvarinda P, Thampithak A, Jantaratnotai N, et al. Autophagy inhibition by caffeine increases toxicity of methamphetamine in SH-SY5Y neuroblastoma cell line. Neurotoxicity Research 2015; 27: 421-429. [
DOI:10.1007/s12640-014-9513-9]
39. Pomytkin I, Costa-Nunes J P, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, et al. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neuroscience & Therapeutics 2018; 24: 763-774. [
DOI:10.1111/cns.12866]
40. Pomytkin I, Pinelis V. Brain insulin resistance: Focus on insulin receptor-mitochondria interactions. Life 2021; 11: 262. [
DOI:10.3390/life11030262]
41. Rani I, Goyal A. Role of GSK3 (glycogen synthase kinase 3) as tumor promoter and tumor suppressor-a review. Plant Archives 2019; 19: 1360-1365.
42. Salcedo-Tello P, Ortiz-Matamoros A, Arias C. GSK3 function in the brain during development, neuronal plasticity, and neurodegeneration. International Journal of Alzheimer’s Disease 2011; 2011. [
DOI:10.4061/2011/189728]
43. Valian N, Heravi M, Ahmadiani A, Dargahi L. Effect of methamphetamine on rat primary midbrain cells; mitochondrial biogenesis as a compensatory response. Neuroscience 2019; 406: 278-289. [
DOI:10.1016/j.neuroscience.2019.03.016]
44. Wang S-F, Yen J-C, Yin P-H, Chi C-W, Lee H-C. Involvement of oxidative stress-activated JNK signaling in the methamphetamine-induced cell death of human SH-SY5Y cells. Toxicology 2008; 246: 234-241. [
DOI:10.1016/j.tox.2008.01.020]
45. Wei M L, Duan P, Wang Z M, Ding M, Tu P. High glucose and high insulin conditions promote MCF 7 cell proliferation and invasion by upregulating IRS1 and activating the Ras/Raf/ERK pathway. Molecular Medicine Reports 2017; 16: 6690-6696. [
DOI:10.3892/mmr.2017.7420]
46. Wu J, Zhu D, Zhang J, Li G, Liu Z, Sun J. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway. Biochemical and Biophysical Research Communications 2015; 465: 368-373. [
DOI:10.1016/j.bbrc.2015.08.005]
47. Xing B, Liang X-p, Liu P, Zhao Y, Chu Z, Dang Y-h. Valproate inhibits methamphetamine induced hyperactivity via glycogen synthase kinase 3β signaling in the nucleus accumbens core. PloS One 2015; 10: e0128068. [
DOI:10.1371/journal.pone.0128068]
48. Xu C m, Wang J, Wu P, Xue Y x, Zhu W l, Li Q q, et al. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. Journal of Neurochemistry 2011; 118: 126-139. [
DOI:10.1111/j.1471-4159.2011.07281.x]
49. Yang K, Chen Z, Gao J, Shi W, Li L, Jiang S, et al. The key roles of GSK-3β in regulating mitochondrial activity. Cellular Physiology and Biochemistry 2017; 44: 1445-1459. [
DOI:10.1159/000485580]
50. Yang P-h, Zhu J-x, Huang Y-d, Zhang X-y, Lei P, Bush A I, et al. Human basic fibroblast growth factor inhibits Tau phosphorylation via the PI3K/Akt-GSK3β signaling pathway in a 6-Hydroxydopamine-Induced model of parkinson’s disease. Neurodegenerative Diseases 2016; 16: 357-369. [
DOI:10.1159/000445871]
51. Zhang L, Cen L, Qu S, Wei L, Mo M, Feng J, et al. Enhancing beta-catenin activity via GSK3beta inhibition protects PC12 cells against rotenone toxicity through Nurr1 induction. PloS One 2016; 11: e0152931. [
DOI:10.1371/journal.pone.0152931]