Volume 29, Issue 3 (September 2025)                   Physiol Pharmacol 2025, 29(3): 323-334 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Valian N, Dargahi L, Heravi M, Ahmadiani A. Insulin and SB-216763, a GSK3β inhibitor, reduce methamphetamine toxicity in human neuroblastoma and rat primary midbrain cells. Physiol Pharmacol 2025; 29 (3) : 10
URL: http://ppj.phypha.ir/article-1-2253-en.html
Abstract:   (1193 Views)

Introduction: Methamphetamine (MA) induces cell death through several mechanisms. Insulin has an important role in cell proliferation and apoptosis via GSK3β inactivation. Here, we evaluated the effect of insulin and SB-216763, a selective GSK3β inhibitor, on MA-induced cell death in neuroblastoma SH-SY5Y, and rat primary midbrain cells.
Methods: Human SH-SY5Y and rat primary midbrain cells extracted from E14.5 rat embryo were treated with insulin (0.005-0.15U) or SB-216763 (0.5-9µM) with or without MA (5mM). The cell viabil-ity was assessed after 24, 48, and 72 h. TNFα, Bax, Bim, and Bcl2 genes expression were exam-ined in primary midbrain cells after 72 h of treatment with 5mM MA, insulin (0.05U), and SB-216763 (3µM).
Results: MA significantly decreased the viability of human SH-SY5Y and rat primary midbrain cells, and insulin and SB-216763 could increase it. In addition, elevated expression of TNFα and Bax fol-lowing MA was attenuated by insulin and SB-216763 in primary midbrain cells.
Conclusion: These findings demonstrated that MA decreases the cell viability of rat primary midbrain cells, at least in part, by upregulation of inflammatory and apoptotic factors, and treatment with insulin and SB-216763 could attenuate MA toxicity.

Article number: 10
Full-Text [PDF 1101 kb]   (26 Downloads)    

References
1. Abbasi Z, Khaksari M, Shayannia A, Jafarisani M, Abbaszadeh-Goudarzi G, Nazarnezhad S, et al. Protection of the PC12 cells by nesfatin-1 against methamphetamine-induced neurotoxicity. International Journal of Peptide Research and Therapeutics 2022; 28: 1-10. [DOI:10.1007/s10989-022-10417-x]
2. Ahmadzadeh-Darinsoo M, Ahmadzadeh-Darinsoo M, Abbasi S, Arefian E, Bernard C, Tafreshi A P. Altered expression of miR-29a-3p and miR-34a-5p by specific inhibition of GSK3β in the MPP+ treated SH-SY5Y Parkinson’s model. Non-coding RNA Research 2022; 7: 1-6. [DOI:10.1016/j.ncrna.2021.12.004]
3. An X, Fu Z, Mai C, Wang W, Wei L, Li D, et al. Increasing the TRPM2 channel expression in human neuroblastoma SH-SY5Y cells augments the susceptibility to ROS-induced cell death. Cells 2019; 8: 28. [DOI:10.3390/cells8010028]
4. Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R. Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 2014; 39: 1066. [DOI:10.1038/npp.2013.307]
5. Beurel E, Grieco S F, Jope R S. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacology & Therapeutics 2015; 148: 114-131. [DOI:10.1016/j.pharmthera.2014.11.016]
6. Cao J, Guo B, Li S, Zhang X, Zhang X, Zhang G, et al. Neuroprotection against 1-Methyl-4-phenylpyridinium-induced cytotoxicity by naturally occurring polydatin through activation of transcription factor MEF2D. NeuroReport 2021; 32: 1065-1072. [DOI:10.1097/WNR.0000000000001696]
7. Carter Y M, Kunnimalaiyaan S, Chen H, Gamblin T C, Kunnimalaiyaan M. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth. Cancer Biology & Therapy 2014; 15: 510-515. [DOI:10.4161/cbt.28015]
8. Chen W, Cai W, Hoover B, Kahn C R. Insulin action in the brain: cell types, circuits, and diseases. Trends in Neurosciences 2022. [DOI:10.1016/j.tins.2022.03.001]
9. Cheng P-W, Wu Y-C, Wong T-Y, Sun G-C, Tseng C-J. Mechanical stretching-induced traumatic brain injury is mediated by the formation of GSK-3β-Tau complex to impair insulin signaling transduction. Biomedicines 2021; 9: 1650. [DOI:10.3390/biomedicines9111650]
10. Cheng Z, Tseng Y, White M F. Insulin signaling meets mitochondria in metabolism. Trends in Endocrinology & Metabolism 2010; 21: 589-598. [DOI:10.1016/j.tem.2010.06.005]
11. Choi W-S, Kim H-W, Xia Z. Preparation of primary cultured dopaminergic neurons from mouse brain. Neural Development: Springer, 2013: 61-69. [DOI:10.1007/978-1-62703-444-9_6]
12. Claros S, Cabrera P, Valverde N, Romero-Zerbo S Y, López-González M V, Shumilov K, et al. Insulin-like growth factor II prevents MPP+ and glucocorticoid mitochondrial-oxidative and neuronal damage in dopaminergic neurons. Antioxidants 2021; 11: 41. [DOI:10.3390/antiox11010041]
13. Collins L M, Dal Bo G, Calcagno M, Monzón-Sandoval J, Sullivan A M, Gutierrez H, et al. Nociceptin/orphanin FQ inhibits the survival and axon growth of midbrain dopaminergic neurons through a p38-MAPK dependent mechanism. Molecular Neurobiology 2016; 53: 7284-7297. [DOI:10.1007/s12035-015-9611-6]
14. Deng X, Cai N-S, McCoy M T, Chen W, Trush M A, Cadet J L. Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 2002; 42: 837-845. [DOI:10.1016/S0028-3908(02)00034-5]
15. Duarte A I, Moreira P I, Oliveira C R. Insulin in central nervous system: more than just a peripheral hormone. Journal of Aging Research 2012; 2012. [DOI:10.1155/2012/384017]
16. Enman N M, Unterwald E M. Inhibition of GSK3 attenuates amphetamine-induced hyperactivity and sensitization in the mouse. Behavioural Brain Research 2012; 231: 217-225. [DOI:10.1016/j.bbr.2012.03.027]
17. Ferrucci M, Busceti C L, Lazzeri G, Biagioni F, Puglisi-Allegra S, Frati A, et al. Bacopa protects against neurotoxicity induced by MPP+ and methamphetamine. Molecules 2022; 27: 5204. [DOI:10.3390/molecules27165204]
18. Figlewicz D, Evans S, Murphy J, Hoen M, Baskin D. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Research 2003; 964: 107-115. [DOI:10.1016/S0006-8993(02)04087-8]
19. Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Molecular Neurobiology 2013; 47: 145-171. [DOI:10.1007/s12035-012-8339-9]
20. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F H, et al. Phosphorylation of tau and α-synuclein induced neurodegeneration in MPTP mouse model of Parkinson’s disease. Neuropsychiatric Disease and Treatment 2020; 16: 651. [DOI:10.2147/NDT.S235562]
21. Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, et al. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson’s disease. CNS Neuroscience & Therapeutics 2021; 27: 308-319. [DOI:10.1111/cns.13609]
22. Kanthasamy A, Anantharam V, Ali S F, Kanthasamy A. Methamphetamine induces autophagy and apoptosis in a mesencephalic dopaminergic neuronal culture model: role of cathepsin-D in methamphetamine-induced apoptotic cell death. Annals of the New York Academy of Sciences 2006; 1074: 234-244. [DOI:10.1196/annals.1369.022]
23. Kanthasamy K, Gordon R, Jin H, Anantharam V, Ali S, G Kanthasamy A, et al. Neuroprotective effect of resveratrol against methamphetamine-induced dopaminergic apoptotic cell death in a cell culture model of neurotoxicity. Current Neuropharmacology 2011; 9: 49-53. [DOI:10.2174/157015911795017353]
24. Kousik S M, Carvey P M, Napier T C. Methamphetamine self-administration results in persistent dopaminergic pathology: implications for Parkinson’s disease risk and reward-seeking. European Journal of Neuroscience 2014; 40: 2707-2714. [DOI:10.1111/ejn.12628]
25. Kunnimalaiyaan S, Gamblin T C, Kunnimalaiyaan M. Glycogen synthase kinase-3 inhibitor AR-A014418 suppresses pancreatic cancer cell growth via inhibition of GSK-3-mediated Notch1 expression. HPB 2015; 17: 770-776. [DOI:10.1111/hpb.12442]
26. Kunnimalaiyaan S, Schwartz V K, Jackson I A, Gamblin T C, Kunnimalaiyaan M. Antiproliferative and apoptotic effect of LY2090314, a GSK-3 inhibitor, in neuroblastoma in vitro. BMC Cancer 2018; 18: 560. [DOI:10.1186/s12885-018-4474-7]
27. Kuroki H, Anraku T, Kazama A, Bilim V, Tasaki M, Schmitt D, et al. 9-ING-41, a small molecule inhibitor of GSK-3beta, potentiates the effects of anticancer therapeutics in bladder cancer. Scientific Reports 2019; 9: 1-9. [DOI:10.1038/s41598-019-56461-4]
28. Liao L-s, Lu S, Yan W-t, Wang S-c, Guo L-m, Yang Y-d, et al. The role of HSP90α in methamphetamine/hyperthermia-induced necroptosis in rat striatal neurons. Frontiers in Pharmacology 2021; 12: 716394. [DOI:10.3389/fphar.2021.716394]
29. Lin M, Chandramani-Shivalingappa P, Jin H, Ghosh A, Anantharam V, Ali S, et al. Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neuroscience 2012; 210: 308-332. [DOI:10.1016/j.neuroscience.2012.03.004]
30. Lu C-C, Chu P-Y, Hsia S-M, Wu C-H, Tung Y-T, Yen G-C. Insulin induction instigates cell proliferation and metastasis in human colorectal cancer cells. International Journal of Oncology 2017; 50: 736-744. [DOI:10.3892/ijo.2017.3844]
31. Marshall J F, O’Dell S J. Methamphetamine influences on brain and behavior: Unsafe at any speed? Trends in Neurosciences 2012; 35: 536-545. [DOI:10.1016/j.tins.2012.05.006]
32. Mathuram T L, Ravikumar V, Reece L M, Karthik S, Sasikumar C S, Cherian K M. Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation. Environmental Toxicology and Pharmacology 2016; 46: 194-205. [DOI:10.1016/j.etap.2016.07.013]
33. Mathuram T L, Venkatesan T, Das J, Natarajan U, Rathinavelu A. The apoptotic effect of GSK-3 inhibitors: BIO and CHIR 98014 on H1975 lung cancer cells through ROS generation and mitochondrial dysfunction. Biotechnology Letters 2020: 1-18. [DOI:10.1007/s10529-020-02861-w]
34. Maurer U, Preiss F, Brauns-Schubert P, Schlicher L, Charvet C. GSK-3-at the crossroads of cell death and survival. Journal of Cell Science 2014; 127: 1369-1378. [DOI:10.1242/jcs.138057]
35. Mirakabad F S T, Khoramgah M S, Abdollahifar M-A, Tehrani A S, Rezaei-Tavirani M, Niknazar S, et al. NUPR1-CHOP experssion, autophagosome formation and apoptosis in the postmortem striatum of chronic methamphetamine user. Journal of Chemical Neuroanatomy 2021; 114: 101942. [DOI:10.1016/j.jchemneu.2021.101942]
36. Moosavi M, Farrokhi M R, Tafreshi N. The effect of curcumin against 6-hydroxydopamine induced cell death and Akt/GSK disruption in human neuroblastoma cells. Physiology and Pharmacology 2018; 22: 163-171.
37. Pang Y, Lin S, Wright C, Shen J, Carter K, Bhatt A, et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience 2016; 318: 157-165. [DOI:10.1016/j.neuroscience.2016.01.020]
38. Pitaksalee R, Sanvarinda Y, Sinchai T, Sanvarinda P, Thampithak A, Jantaratnotai N, et al. Autophagy inhibition by caffeine increases toxicity of methamphetamine in SH-SY5Y neuroblastoma cell line. Neurotoxicity Research 2015; 27: 421-429. [DOI:10.1007/s12640-014-9513-9]
39. Pomytkin I, Costa-Nunes J P, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, et al. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neuroscience & Therapeutics 2018; 24: 763-774. [DOI:10.1111/cns.12866]
40. Pomytkin I, Pinelis V. Brain insulin resistance: Focus on insulin receptor-mitochondria interactions. Life 2021; 11: 262. [DOI:10.3390/life11030262]
41. Rani I, Goyal A. Role of GSK3 (glycogen synthase kinase 3) as tumor promoter and tumor suppressor-a review. Plant Archives 2019; 19: 1360-1365.
42. Salcedo-Tello P, Ortiz-Matamoros A, Arias C. GSK3 function in the brain during development, neuronal plasticity, and neurodegeneration. International Journal of Alzheimer’s Disease 2011; 2011. [DOI:10.4061/2011/189728]
43. Valian N, Heravi M, Ahmadiani A, Dargahi L. Effect of methamphetamine on rat primary midbrain cells; mitochondrial biogenesis as a compensatory response. Neuroscience 2019; 406: 278-289. [DOI:10.1016/j.neuroscience.2019.03.016]
44. Wang S-F, Yen J-C, Yin P-H, Chi C-W, Lee H-C. Involvement of oxidative stress-activated JNK signaling in the methamphetamine-induced cell death of human SH-SY5Y cells. Toxicology 2008; 246: 234-241. [DOI:10.1016/j.tox.2008.01.020]
45. Wei M L, Duan P, Wang Z M, Ding M, Tu P. High glucose and high insulin conditions promote MCF 7 cell proliferation and invasion by upregulating IRS1 and activating the Ras/Raf/ERK pathway. Molecular Medicine Reports 2017; 16: 6690-6696. [DOI:10.3892/mmr.2017.7420]
46. Wu J, Zhu D, Zhang J, Li G, Liu Z, Sun J. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway. Biochemical and Biophysical Research Communications 2015; 465: 368-373. [DOI:10.1016/j.bbrc.2015.08.005]
47. Xing B, Liang X-p, Liu P, Zhao Y, Chu Z, Dang Y-h. Valproate inhibits methamphetamine induced hyperactivity via glycogen synthase kinase 3β signaling in the nucleus accumbens core. PloS One 2015; 10: e0128068. [DOI:10.1371/journal.pone.0128068]
48. Xu C m, Wang J, Wu P, Xue Y x, Zhu W l, Li Q q, et al. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. Journal of Neurochemistry 2011; 118: 126-139. [DOI:10.1111/j.1471-4159.2011.07281.x]
49. Yang K, Chen Z, Gao J, Shi W, Li L, Jiang S, et al. The key roles of GSK-3β in regulating mitochondrial activity. Cellular Physiology and Biochemistry 2017; 44: 1445-1459. [DOI:10.1159/000485580]
50. Yang P-h, Zhu J-x, Huang Y-d, Zhang X-y, Lei P, Bush A I, et al. Human basic fibroblast growth factor inhibits Tau phosphorylation via the PI3K/Akt-GSK3β signaling pathway in a 6-Hydroxydopamine-Induced model of parkinson’s disease. Neurodegenerative Diseases 2016; 16: 357-369. [DOI:10.1159/000445871]
51. Zhang L, Cen L, Qu S, Wei L, Mo M, Feng J, et al. Enhancing beta-catenin activity via GSK3beta inhibition protects PC12 cells against rotenone toxicity through Nurr1 induction. PloS One 2016; 11: e0152931. [DOI:10.1371/journal.pone.0152931]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.