1. Avci-Adali M, Behring A, Keller T, Krajewski S, Schlensak C, Wendel H P. Optimized conditions for successful transfection of human endothelial cells with in vitro synthesized and modified mRNA for induction of protein expression. Journal of Biological Engineering 2014; 8: 8. [
DOI:10.1186/1754-1611-8-8]
2. Badieyan Z S, Evans T. Concise review: application of chemically modified mRNA in cell fate conversion and tissue engineering. Stem cells translational medicine 2019; 8: 833-843. [
DOI:10.1002/sctm.18-0259]
3. Bell G D, Yang Y, Leung E, Krissansen G W. mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PloS one 2018; 13: e0201464. [
DOI:10.1371/journal.pone.0201464]
4. Bettinger T, Carlisle R C, Read M L, Ogris M, Seymour L W. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic acids research 2001; 29: 3882-3891. [
DOI:10.1093/nar/29.18.3882]
5. Chang M-F, Hsieh J-H, Chiang H, Kan H-W, Huang C-M, Chellis L, et al. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Scientific Reports 2016; 6: 35612. [
DOI:10.1038/srep35612]
6. Connor B, Firmin E, McCaughey-Chapman A, Monk R, Lee K, Liot S, et al. Conversion of adult human fibroblasts into neural precursor cells using chemically modified mRNA. Heliyon 2018; 4: e00918. [
DOI:10.1016/j.heliyon.2018.e00918]
7. Durymanov M, Reineke J. Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers. Frontiers in pharmacology 2018; 9: 971. [
DOI:10.3389/fphar.2018.00971]
8. Erbacher P, Roche A C, Monsigny M, Midoux P. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Experimental cell research 1996; 225: 186-194. [
DOI:10.1006/excr.1996.0169]
9. Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís M Á, Del Pozo-Rodríguez A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials (Basel, Switzerland) 2020; 10: 364. [
DOI:10.3390/nano10020364]
10. Hasan M T, Subbaroyan R, Chang T Y. High-efficiency stable gene transfection using chloroquine-treated Chinese hamster ovary cells. Somatic cell and molecular genetics 1991; 17: 513-517. [
DOI:10.1007/BF01233175]
11. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006; 108: 4009-4017. [
DOI:10.1182/blood-2006-04-015024]
12. Homayouni F M, Sadeghi-Zadeh M, Alizadeh-Shoorjestan B, Dehghani-Varnamkhasti R, Narimani S, Darabi L, et al. Isolation and Culture of Embryonic Mouse Neural Stem Cells. Journal of visualized experiments: 2018 Nov 11;(141). [
DOI:10.3791/58874]
13. Joo K M, Jin J, Kang B G, Lee S J, Kim K H, Yang H, et al. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PloS one 2012; 7: e25936. [
DOI:10.1371/journal.pone.0025936]
14. Joshi C R, Labhasetwar V, Ghorpade A. Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12: 51-83. [
DOI:10.1007/s11481-016-9724-3]
15. Kauffman K J, Mir F F, Jhunjhunwala S, Kaczmarek J C, Hurtado J E, Yang J H, et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 2016; 109: 78-87. [
DOI:10.1016/j.biomaterials.2016.09.006]
16. Keravala A, Ormerod B K, Palmer T D, Calos M P. Long-term transgene expression in mouse neural progenitor cells modified with phiC31 integrase. Journal of neuroscience methods 2008; 173: 299-305. [
DOI:10.1016/j.jneumeth.2008.06.005]
17. Kužnik A, Benčina M, Švajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. The Journal of Immunology 2011; 186: 4794-4804. [
DOI:10.4049/jimmunol.1000702]
18. Lakshmipathy U, Pelacho B, Sudo K, Linehan J L, Coucouvanis E, Kaufman D S, et al. Efficient transfection of embryonic and adult stem cells. Stem Cells 2004; 22: 531-43. [
DOI:10.1634/stemcells.22-4-531]
19. Liang W, Lam J K. Endosomal escape pathways for non-viral nucleic acid delivery systems. Molecular regulation of endocytosis 2012: 429-456. [
DOI:10.5772/46006]
20. López-Lastra M, Rivas A, Barría M I. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biological research 2005; 38: 121-146. [
DOI:10.4067/S0716-97602005000200003]
21. Mandal P K, Rossi D J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nature protocols 2013; 8: 568-582. [
DOI:10.1038/nprot.2013.019]
22. McLenachan S, Zhang D, Palomo A B A, Edel M J, Chen F K. mRNA transfection of mouse and human neural stem cell cultures. PLoS One 2013; 8: e83596. [
DOI:10.1371/journal.pone.0083596]
23. Michel Y M, Poncet D, Piron M, Kean K M, Borman A M. Cap-poly (A) synergy in mammalian cell-free extracts investigation of the requirements for poly (a)-mediated stimulation of translation initiation. Journal of Biological Chemistry 2000; 275: 32268-32276. [
DOI:10.1074/jbc.M004304200]
24. Mockey M, Gonçalves C, Dupuy F P, Lemoine F M, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly (A) chains in cis and in trans for a high protein expression level. Biochemical and biophysical research communications 2006; 340: 1062-1068. [
DOI:10.1016/j.bbrc.2005.12.105]
25. Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Frontiers in neurology 2020; 11: 148. [
DOI:10.3389/fneur.2020.00148]
26. Patel S, Athirasala A, Menezes P P, Ashwanikumar N, Zou T, Sahay G, et al. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue engineering. Part A 2019; 25: 91-112. [
DOI:10.1089/ten.tea.2017.0444]
27. PENG J, SCHOENBERG D R. mRNA with a< 20-nt poly (A) tail imparted by the poly (A)-limiting element is translated as efficiently in vivo as long poly (A) mRNA. RNA 2005; 11: 1131-1140. [
DOI:10.1261/rna.2470905]
28. Pickard M R, Adams C F, Chari D M. Magnetic Nanoparticle-Mediated Gene Delivery to Two- and Three-Dimensional Neural Stem Cell Cultures: Magnet-Assisted Transfection and Multifection Approaches to Enhance Outcomes. Curr Protoc Stem Cell Biol 2017; 40: 2d.19.1-2d.19.16. [
DOI:10.1002/cpsc.23]
29. Preiss T. The end in sight: poly (A), translation and mRNA stability in eukaryotes. Translation Mechanisms 2002: 197-212.
30. Rietze R L, Reynolds B A. Neural stem cell isolation and characterization. Methods in enzymology. Vol 419: Elsevier, 2006: 3-23. [
DOI:10.1016/S0076-6879(06)19001-1]
31. Rohani L, Fabian C, Holland H, Naaldijk Y, Dressel R, Löffler-Wirth H, et al. Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem cell research 2016; 16: 662-672. [
DOI:10.1016/j.scr.2016.03.008]
32. Shih C-c, DiGiusto D, Mamelak A, LeBon T, Forman S J. Hematopoietic potential of neural stem cells: plasticity versus heterogeneity. Leukemia & lymphoma 2002; 43: 2263-2268. [
DOI:10.1080/1042819021000040215]
33. Wang Y, Su H-h, Yang Y, Hu Y, Zhang L, Blancafort P, et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Molecular Therapy 2013; 21: 358-367. [
DOI:10.1038/mt.2012.250]
34. Warren L, Lin C. mRNA-based genetic reprogramming. Molecular Therapy 2019; 27: 729-734. [
DOI:10.1016/j.ymthe.2018.12.009]
35. Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochemical and biophysical research communications 2010; 394: 189-193. [
DOI:10.1016/j.bbrc.2010.02.150]
36. Zhang B, Mallapragada S. The mechanism of selective transfection mediated by pentablock copolymers; Part II: Nuclear entry and endosomal escape. Acta Biomaterialia 2011; 7: 1580-1587. [
DOI:10.1016/j.actbio.2010.11.033]